Меню
Бесплатно
Главная  /  Ford  /  Впервые измерена сила отталкивания в эффекте Казимира–Лифшица. Притяжение и отталкивание – диалектический закон отношений Элементарная частица материи

Впервые измерена сила отталкивания в эффекте Казимира–Лифшица. Притяжение и отталкивание – диалектический закон отношений Элементарная частица материи

1. Постановка вопроса.

Великий итальянский художник и ученый Леонардо да Винчи проводил опыты, которыми удивлял своих учеников: он таскал по полу, то плотно свитую веревку, то ту же веревку во всю длину.

Он смог установить, что “каждым тяжелым телом побеждается сопротивление трения весу, равное четвертой части этого веса”.

На уроке мы проверили это утверждение (данные представлены ниже). Кроме этого мы обнаружили “белое пятно” в изложении материала в учебнике. В каждом опыте стрелка динамометра “рвалась вперед” в момент начала движения, обнаруживая максимальную силу сопротивления, большую, чем сила трения скольжения. Почему так происходит? Какова природа этого “избытка”? Мы решили разобраться с этим вопросом.

2. Общие вопросы о трении.

Любое движение окружающих нас тел сопровождается сопротивлением. Даже больше – сопротивление необходимо для начала движения и изменения скорости. Например: останавливается автомобиль, у которого водитель отключил двигатель; останавливается после многих колебаний маятник; медленно погружается в банку с маслом брошенный туда маленький металлический шарик; стираются подошвы обуви и шины машин; изнашиваются детали трущихся механизмов. Все это и многое другое вызвано действием сил сопротивления.

Французский физик Гильом пишет: “Всем нам случалось выходить в гололедицу; сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся по возможности устранить его в машинах – и хорошо делают. В прикладной механике о трении говорится как о крайне нежелательном явлении, и это правильно, - однако лишь в узкой специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно даёт нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрётся в угол, а перо выскальзывать из пальцев".

3. Трение скольжения.

Поверхность твёрдого тела обладает неровностями. Даже у хорошо отшлифованных металлов в электронный микроскоп видны “бугорки” и “впадинки”. При сжатии тел соприкосновение происходит только в самых высоких местах и площадь реального контакта значительно меньше общей площади соприкасающихся поверхностей. Давление в местах соприкосновения может быть очень большим, возникает деформация. При этом площадь контакта увеличивается, а давление падает. Так продолжается до тех пор, пока давление не достигнет определённого значения, при котором дальнейшая деформация прекращается. Поэтому площадь фактического контакта оказывается пропорциональной сжимающей силе.

В месте контакта действуют силы упругости, возникающие при деформации “бугорков”. Эти силы направлены против движения, и именно они препятствуют движению тела. К такому мнению приводит мысленный эксперимент в космическом корабле. В невесомости любое тело можно поднять лёгким движением, т.е. сил сопротивления для неподвижно лежащих предметов там нет (ВЛИЯНИЕ ЭЛЕКТРОМАГНИТНЫХ СИЛ ПРИТЯЖЕНИЯ ПРАКТИЧЕСКИ НУЛЕВОЕ). Силы сопротивления появляются, если к телу приложить некоторою силу. В результате такого действия тело и поверхность деформируются – появляются силы сопротивления (ИХ ПРИРОДА - ЭЛЕКТРОМАГНИТНАЯ СИЛА ОТТАЛКИВАНИЯ). Т.о. силы притяжения на механизме сопротивления практически не сказываются. Они влияют на целостность тела. Очевидно, что при молекулярной шлифовке, можно добиться полного соединения двух частей в единое целое. А это к трению отношения не имеет, это скорее вопрос для изучения сопротивления материалов. Аналогична ситуация с пластилином. Два кусочка при слабом соединении деформируются, но их можно снова разделить. А если нажать посильнее, то два кусочка станут единым целым. Эта модель сил сопротивления, по-видимому, близка к реальной ситуации в металлах.

Первоначально нашей задачей было определение сил трения скольжения. Для нашего эксперимента была собрана следующая установка.

1 2 3 4 5
F тяж., Н 20 25 30 35 40
F тр. ск., Н 4,5 5,5 7,0 8,5 9,5
F тяж./F тр. ск. 4,4 4,5 4,3 4,1 4,2

Наш опыт подтвердил утверждение Леонардо да Винчи, что “каждым тяжелым телом побеждается сопротивление трения весу, равное четвертой части этого веса”.

Сила трения скольжения зависит не только от свойств поверхностей и силы давления, но и от скорости движения.

4. Сила трения покоя (сила сопротивления).

Силу, которая противодействует первоначальному сдвигу предмета, называют силой трения покоя. Хотя нагляднее её называть силой сопротивления. Например, моей попытке сдвинуть гору мешает сила сопротивления. А попробуйте сказать, что сдвинуть гору вам мешает сила трения покоя? По-моему будет звучать нелепо. Ведь о газах говорят правильно – сопротивление газов. Однако оставим вопросы терминологии…

Именно сила сопротивления является необходимым условием для изменения скорости тела, т.е. для начала движения или для начала торможения. Это как необходимость воздуха для дыхания (условие необходимое, но не достаточное). В процессе движения мы толкаем Землю, а она толкает нас.

Если приложенная сила не достаточно велика, то сила сопротивления её уравновешивает. Затем сила сопротивления достигает своего максимума, и тело начинает движение, т.е.

F сопротивления макс. > F тр. скольжения.

Мы решили выяснить величину этого “избытка”: F= F сопротивления макс. - F тр. скольжения.

Предполагалось, что эта величина увеличивается пропорционально силе тяжести, как и сила трения скольжения. Результат оказался иным.

1 2 3 4 5
F тяж., Н 20 25 30 35 40
F сопр. макс., Н 6,5 8 10 12,5 17
F тр. ск., Н 4,5 5,5 7 8,5 9,5
F сопр. макс.- F тр. ск. 2,0 2,5 3,0 4,0 7,5

Почему же это происходит? Учебники, если и указывают на такую зависимость, то не объясняют её. Мы решили выяснить, как же зависит максимальная сила сопротивления от силы тяжести. Мы предполагали получить прямолинейный график, однако получилась ветвь параболы, которая при некотором значении силы тяжести резко уходит вверх. Наша версия: чем больше вес тела, тем глубже он “тонет” в поверхности стола. При малом погружении, его ещё можно выдернуть, и дальше он будет двигаться под действием меньшей силы, так как инерция не позволит ему снова “потонуть”. Тело будет скользить не проваливаясь, как движется человек на водных лыжах за катером.

При глубоком “погружении” никакая горизонтальная сила не сможет выдернуть тело. И это уже не трение, а сцепление. Аналогия с бороной помогла разобраться в этом вопросе.

Если на борону положить груз, то она полностью погрузится в землю и тащить её горизонтально , вспарывая землю на большую глубину, будет просто невозможно. И, видимо, речь будет идти уже не о трении, а о сопротивлении материалов (система борона-земля, как единое тело).

Вспомним детский конструктор.

Сцепление частей конструктора похоже на забитые гвозди и горизонтальная сила не может разрушить соединение, не ломая частей конструктора.

Пройдите босиком по влажному песку, и вы увидите, что следы – это одни часть конструктора, а наши ступни – другая. Протекторы нужны для создания механического сцепления, т.е. для увеличения силы сопротивления. Понятие “сила сопротивления” всеобъемлюще. Трение – это понятие, справедливое только для относительно гладких поверхностей и которое находится между МЕХАНИЧЕСКИМ СЦЕПЛЕНИЕМ и ЭЛЕКТРОМАГНИТНЫМИ СИЛАМИ ПРИТЯЖЕНИЯ, которые скрепляют тела. Мы же привыкли работать с крайними вариантами упрощений: пластичная и абсолютно упругая деформация, абсолютно чёрное тело и зеркальное отражение, идеальный газ. Трение – это своего рода полупроводник, занимающий среднюю нишу, но чрезвычайно важный. Какой величины должны быть бугорки и впадинки, чтобы говорить о трении, а не механическом сцеплении? Может быть, поэтому такие разные результаты получали знаменитые учёные, которые изучали трение?

5. Заключение.

Вопрос для дальнейшей работы: какую силу нужно приложить, чтобы тело можно было поднять с горизонтальной поверхности? С одной стороны будет действовать сила тяжести и электромагнитное притяжение, а с другой стороны сила, приложенная против силы тяжести. Так мы выясним, насколько значимы силы притяжения. Или ими можно пренебрегать (в конкретных задачах) и оставлять для рассмотрения только силы отталкивания, как мы отбрасываем из рассмотрения взаимодействие молекул при изучении идеального газа. Все мои разработки можно найти на школьном сайте zabalkin.narod.ru

Эфирный поток, заставляющий Эфир отталкиваемой частицы отдаляться от избытка Эфира, т.е. от объекта с Полем Отталкивания, называется «Силой Отталкивания ».

Естественно, что в отличие от процесса притяжения никакой связи между отталкивающимися частицами не образуется. Напротив, ни о какой связи между частицами здесь не может быть и речи. Допустим, две частицы были гравитационно связаны. Но в результате трансформации одна из них или сразу обе поменяли Поле Притяжения на Поле Отталкивания. Сразу же вступает в действие механизм антигравитации, и частицы отталкиваются друг от друга, т.е. связь разрывается.

Величина Силы Отталкивания зависит от тех же трех факторов, что и величина Силы Притяжения:

1)от величины Поля Отталкивания частицы (химического элемента или тела), служащей причиной Силы Отталкивания;

2)от расстояния между источником Поля Отталкивания и исследуемой частицей;

3)от качества отталкиваемой частицы.

Давайте рассмотрим влияние всех этих факторов.

1)Величина Поля Отталкивания объекта – причины Силы Отталкивания.

Величина Поля Отталкивания частицы – это скорость поглощения Эфира ее поверхностью. Соответственно, чем с большей скоростью поглощает частица Эфир, тем больше будет величина Силы Отталкивания, вызываемой этой частицей в исследуемой частице.

2)Расстояние между источником Поля Отталкивания и исследуемой частицей.

Объяснение зависимости величины Силы Отталкивания от расстояния аналогично описанию причины, по которой зависит от расстояния Сила Притяжения.

Элементарная частица – это сфера, и если отдаляться от нее, то объем пространства, окружающего частицу, будет концентрически возрастать. Соответственно, чем дальше от частицы, тем больше становится объем Эфира, окружающего частицу. Каждая частица с Полем Отталкивания испускает Эфир в окружающее эфирное поле с определенной скоростью. Скорость испускания частицей Эфира – это и есть изначально присущая этой частице величина Поля Отталкивания. Однако чем дальше от частицы, тем больший объем Эфира ее будет окружать. Соответственно, чем дальше от частицы, тем меньше будет скорость, с которой Эфир будет отдаляться от данной частицы (т.е. тем меньше будет скорость эфирного потока) – т.е. тем меньше будет величина Поля Отталкивания. Таким образом, мы говорим, во-первых, об изначально присущей частице величине Поля Отталкивания, а во-вторых, о величине Поля Отталкивания на определенном расстоянии от частицы.

14. Сила Отталкивания

Эфирный поток, заставляющий Эфир отталкиваемой частицы отдаляться от избытка Эфира, т. е. от объекта с Полем Отталкивания, называется «Силой Отталкивания ».

Естественно, что в отличие от процесса притяжения никакой связи между отталкивающимися частицами не образуется. Напротив, ни о какой связи между частицами здесь не может быть и речи. Допустим, две частицы были гравитационно связаны. Но в результате трансформации одна из них или сразу обе поменяли Поле Притяжения на Поле Отталкивания. Сразу же вступает в действие механизм антигравитации, и частицы отталкиваются друг от друга, т. е. связь разрывается.

Величина Силы Отталкивания зависит от тех же трех факторов, что и величина Силы Притяжения:

1) от величины Поля Отталкивания частицы (химического элемента или тела), служащей причиной Силы Отталкивания;

2) от расстояния между источником Поля Отталкивания и исследуемой частицей;

3) от качества отталкиваемой частицы.

Давайте рассмотрим влияние всех этих факторов.

1) Величина Поля Отталкивания объекта – причины Силы Отталкивания.

Величина Поля Отталкивания частицы – это скорость поглощения Эфира ее поверхностью. Соответственно, чем с большей скоростью поглощает частица Эфир, тем больше будет величина Силы Отталкивания, вызываемой этой частицей в исследуемой частице.

2) Расстояние между источником Поля Отталкивания и исследуемой частицей.

Объяснение зависимости величины Силы Отталкивания от расстояния аналогично описанию причины, по которой зависит от расстояния Сила Притяжения.

Элементарная частица – это сфера, и если отдаляться от нее, то объем пространства, окружающего частицу, будет концентрически возрастать. Соответственно, чем дальше от частицы, тем больше становится объем Эфира, окружающего частицу. Каждая частица с Полем Отталкивания испускает Эфир в окружающее эфирное поле с определенной скоростью. Скорость испускания частицей Эфира – это и есть изначально присущая этой частице величина Поля Отталкивания. Однако чем дальше от частицы, тем больший объем Эфира ее будет окружать. Соответственно, чем дальше от частицы, тем меньше будет скорость, с которой Эфир будет отдаляться от данной частицы (т. е. тем меньше будет скорость эфирного потока) – т. е. тем меньше будет величина Поля Отталкивания. Таким образом, мы говорим, во-первых, об изначально присущей частице величине Поля Отталкивания, а во-вторых, о величине Поля Отталкивания на определенном расстоянии от частицы.

3) Качество отталкиваемой частицы.

Конечно, качество может быть любым. Это может быть как частица с Полем Притяжения, так и с Полем Отталкивания.

И величина Поля может быть любой. Если мы ведем речь об отталкиваемой частице с Полем Отталкивания, то почему на величину Силы Отталкивания частицы влияет ее собственное качество? Все дело в том, что любая частица с Полем Отталкивания, испуская Эфир, постоянно создает тем самым вокруг себя так называемую «эфирную подушку ». Вот и выходит, что частица будет дополнительно отталкиваться «эфирной подушкой», которую она постоянно создает перед собой с той стороны, где располагается отталкивающая частица. И скорость создания частицей «эфирной подушки» соответствует скорости испускания ею самой Эфира, т. е. величине ее Поля Отталкивания.

В современной физике не существует Закона Всемирного Отталкивания , аналогичного Закону Всемирного Тяготения, открытому И. Ньютоном. И напрасно. Мы не понимаем, почему до сих пор такой Закон не сформулирован, ведь его проявления не менее очевидны, нежели демонстрации Закона Гравитации. Взять хотя бы такой известный факт, как подъем нагревающегося воздуха вверх.

Раз нет Закона, нет и формулы, описывающей взаимодействие объектов, хотя бы один из которых является причиной Силы Отталкивания. Но мы исправим это недоразумение.

По аналогии с формулой для Закона Тяготения, но не Исаака Ньютона, а с той, что выведена нами в статье о Силе Притяжения, мы составим следующую формулу для Закона Антигравитации:

F = (аm1/ r) + аm2 , где аm1/ r – это антимасса отталкивающего объекта, вычисленная для данной точки, т. е. с учетом расстояния, а аm2 – это антимасса отталкиваемой частицы.

Как видите, в данном случае мы тоже используем не произведение антимасс, а их сложение. Для того чтобы узнать в какой-то момент времени скорость, с которой исследуемая отталкиваемая частица отдаляется от отталкивающего ее объекта, нам потребуется не перемножать их Поля Отталкивания (антимассы), а именно складывать. Поле Отталкивания – это скорость движения Эфира от объекта, испускающего Эфир. Для того чтобы узнать скорость движения частицы, нужно сложить скорость эфирного потока, создаваемого отталкивающей частицей, т. е. величину ее Поля Отталкивания в данной точке, а также скорость, с которой отталкивается создаваемой ею самой «эфирной подушкой» отталкиваемая частица.

Мы берем антимассу отталкиваемой частицы и прибавляем к ней Поле Отталкивания отталкивающей частицы, вычисленное в данной точке, т. е. с учетом расстояния. Для этого мы возьмем не изначальную величину антимассы отталкивающего объекта, а антимассу, деленную на расстояние.

Данная формула подходит только для тех случаев, когда отталкиваемый объект сам обладает Полем Отталкивания, т. е. антимассой. Если же отталкиваемая частица характеризуется массой (т. е. формирует Поле Притяжения), формула несколько изменится. Формулу мы приведем чуть ниже.

Давайте рассмотрим детали механизма антигравитации на примере частиц разного качества.

Проводимый нами мысленный эксперимент будет протекать в идеальных условиях – т. е. в абсолютно пустом пространстве. Одна из взаимодействующих частиц обязательно обладает Полем Отталкивания.

1) Обе взаимодействующие частицы обладают Полями Отталкивания.

А)Величина Полей Отталкивания обеих частиц одинакова.

В этом случае каждая из частиц является одновременно и отталкивающей, и отталкиваемой. В каждой из частиц возникает Сила Отталкивания, вызванная действием Поля Отталкивания второй из взаимодействующих частиц.

Пускай обе частицы первоначально находятся друг от друга на каком-то расстоянии. Из-за равенства Полей Отталкивания обе частицы отдаляются друг от друга с постоянной скоростью. Скорость отдаления является постоянной, потому что постоянной является скорость испускания частицами эфира.

Б)Величина Поля Отталкивания одной из частиц больше Поля Отталкивания другой частицы.

Даже несмотря на то что в данном случае величина Полей Отталкивания частиц различна, механизм их отталкивания друг от друга аналогичен приведенному выше. Только в одной из частиц возникает Сила Отталкивания – в отталкиваемой, т. е. в той, у которой Поле Отталкивания меньше. Отталкивающая частица – это та, у которой Поле Отталкивания больше. Она формирует Силу Отталкивания.

Отталкиваемая частица будет отдаляться от отталкивающей равнозамедленно. Замедление связано с концентрическим увеличением объема пространства по мере удаления от частицы, испускающей Эфир. Скорость отдаления частицы в каждый момент времени пропорциональна величине возникающей в ней Силы Отталкивания. Чем больше Сила Отталкивания, возникающая в частице, тем больше будет скорость отдаления этой частицы в данный момент.

2) Притягиваемая частица обладает Полем Отталкивания.

В данном случае Сила Отталкивания возникает только у одной частицы – той, что обладает Полем Притяжения. Вызывает эту Силу частица с Полем Отталкивания.

Так как отталкиваемая частица обладает Полем Притяжения, она вызывает в отталкивающей частице ответную Силу – Силу Притяжения.

Будет ли происходить отдаление либо сближение частиц, либо расстояние между ними останется неизменным, зависит от величины Силы Отталкивания в отталкиваемой частице и Силы Притяжения в отталкивающей. Если обе Силы равны по модулю, расстояние между частицами будет оставаться неизменным. Если величина Силы Отталкивания больше по модулю, то будет происходить отдаление частиц. А если больше величина Силы Притяжения, то расстояние между частицами будет сокращаться.

А вот и формула для вычисления первоначальной Силы Отталкивания у отталкиваемой частицы, которая сама обладает Полем Притяжения.

F = (аm/r) – m , где аm/r – это антимасса отталкивающего объекта, вычисленная для данной точки, т. е. с учетом расстояния, а m – это масса отталкиваемой частицы. Обратите внимание, здесь мы производим не сложение Полей Отталкивания и Притяжения, а их вычитание. Вычитание производится по той причине, что Поле Притяжения отталкиваемой частицы уменьшает скорость, с которой в каждый момент времени эта частица стремится отдаляться от отталкивающей частицы. Как видите, процесс зеркально противоположен тому, что мы описывали для притяжения частицы с Полем Отталкивания.

Из книги Закон привлечения и сила мысли автора Аткинсон Вильям Волкер

Из книги Как лечить себя водой автора Стефания Сестра

Сила воды – сила самой жизни Хочу сразу вас предупредить, что, в отличие от «Большой книги целебных свойств воды», в этой, малой, я теорию даю совсем коротко, доходчиво, чтобы она не занимала места – так, как говорится, намечаю вешками. Если вы раньше не читали о лечении

Из книги Мастерская перехода. Восхождение в Любовь. Учебник Мастера Жизни автора Усманова Ирина Александровна

Сила единства, сила целостности Всё во Вселенной вышло из одного Источника и есть продукт творческой мысли Создателя. Созданные «по образу и подобию», мы являемся частичками-клеточками единого организма и живём в поле действия божественного принципа: «Часть стремится к

Из книги Механика тел автора Данина Татьяна

Сила творения, сила соответствия (Аналогии) «Как в большом, так и в малом», «что внутри, то и снаружи», «как вверху, так и внизу». Принцип этой Силы – принцип отражения. Понимать его следует так: если вокруг вас происходят определенные события, то внутри вас есть «магнит»,

Из книги Эфирная механика автора Данина Татьяна

Сила свободной воли, или сила выбора Человек обладает свободой выбирать сам: как думать, как чувствовать, как говорить, как действовать. Если он не пользуется своей Волей, то ею пользуются другие (безвольный человек). По доброй Воле (то есть добровольно) человек может

Из книги Основные оккультные законы и понятия автора Данина Татьяна

Сила любви. Сила гармонии и красоты Божественная Любовь является энергоинформационной матрицей нашей Вселенной, основой Гармонии и Совершенства. Весь Мир, физический и нефизический, тонкоматериальный стремится к Гармонии, её смысл состоит в насыщении всех уровней

Из книги Осмысление процессов автора Тевосян Михаил

21. Центробежная Сила – это Сила Инерции Если любое тело заставить вращаться вокруг собственной оси или по кругу, вокруг какого-либо центра, химические элементы, входящие в его состав, будут следовать по криволинейным (круговым) траекториям. При этом, элементы тела,

Из книги Лучшие гадания от А до Я автора Лома Елена

13. Механизм антигравитации (отталкивания) Частица с Полем Притяжения – причина возникновения в окружающих ее частицах Силы Притяжения. А как же быть с частицами, формирующими в эфирном поле Поля Отталкивания? Они ведь не вызывают Силы Притяжения. Нет, любая частица с

Из книги Освобождение от неприятных мыслей и эмоций автора Ингерман Сандра

16. Поля Притяжения уменьшают Поля Отталкивания, а Поля Отталкивания уменьшают Поля Притяжения Давайте рассмотрим, что происходит с величиной Сил Притяжения и Сил Отталкивания, если их источники располагаются рядом, на одной прямой.Источники Сил Притяжения – это всегда

Из книги Жизнь без границ. Концентрация. Медитация автора Жикаренцев Владимир Васильевич

20. Трансформация качества антигравитацией (Полем Отталкивания) Не только частицы Инь, но также и частицы Ян способны оказывать трансформирующее влияние на окружающие их частицы. Точно так же, как любая существующая частица с Полем Притяжения оказывает трансформирующее

Из книги автора

23. Поле Отталкивания – обязательное условие для возникновения инерционного движения Только те частицы, у которых после приведения их в движение другой частицей существует Поле Отталкивания – изначально присущее или возникшее в результате трансформации (неважно) –

Из книги автора

11. Поля Притяжения и Отталкивания – внешнее проявление качества элементарных частиц Если бы в частицах Эфир только разрушался, и не возникал, то к ним в единицу времени из окружающего пространства поступало бы ровно столько, сколько должно быть разрушено.Аналогично,

Из книги автора

Из книги автора

Сила Ключевые слова. Сила; Знание; Целостность.Сила – достояние Воина. Сила в нордической Традиции – это не только способность к изменению Мира и себя в нем, но и способность следовать Дороге, свобода от оков сознания. И, поскольку лишь мусор сознания дробит в человеческом

Из книги автора

Сила утверждений и сила просьб Когда мы используем слова для того, чтобы исцелить окружающих и самих себя, мы можем либо взывать о помощи, либо заявлять о том, что все, что нам необходимо, уже находится в вашем распоряжении прямо сейчас.Я не говорю, что любая просьба –

Из книги автора

Сила Сила, которая в уме, двойственна в том смысле, что она разделяет добро и зло. Она бывает маленькая, средняя, большая. Она всегда борется, соревнуется и противопоставляет себя. Поэтому это не сила, а слабость.Сила, которая в тандэне, едина. Да, она двойственна в смысле инь

Мы уже несколько раз указывали, что два атома или иона в кристалле не могут подходить друг к другу сколь угодно близко, так как между ними возникают силы отталкивания, быстро принимающие большие значения, когда расстояние становится меньше равновесного. Как мы видели в I части, существуют две причины этих сил: электростатическое отталкивание и явление квантовомеханического резонанса. Непосредственное получение закона отталкивания из этих явлений почти бесперспективно. Поэтому для численного определения мы пойдем по более удобному экспериментальному пути, т. е. примем, что сила убывает с какой-то степенью расстояния. Показатель степени мы определим по Борну из сжимаемости кристалла.

Как и прежде, обозначим через а длину ребра элементарной ячейки в состоянии равновесия. Под действием внешнего давления она уменьшается равномерно по всему кристаллу на величину Объем кубического кристалла,

состоящего из ячеек становится тогда равным

Сжимаемость равна отношению между относительным изменением объема и давлением так что с точностью до членов высших порядков имеем:

Электростатическая энергия деформированного кристалла получается, если подставить в (66) вместо а выражение и умножить получившуюся величину на число ячеек

Если сила отталкивания может быть представлена степенной функцией расстояния между атомами, то и потенциал, которым она определяется, должен иметь вид:

который, помимо числа элементарных ячеек и константы содержит в знаменателе расстояние между атомами в неизвестной пока степени Полная энергия равна сумме этой энергии отталкивания и электростатической энергии, т. е.

Обе постоянные Лил определяются следующим образом. Когда наружное давление равно нулю (кристалл в вакууме), в состоянии равновесия длина ребра равна а. Поэтому (68) должно для иметь минимум:

Из этого условия следует:

и после подстановки в (68):

Разлагая это выражение в ряд по степеням и пренебрегая членами порядка выше второго, получаем:

Если кристалл находится под воздействием внешнего давления то при изменении параметра на совершается работа

вызывающая равное по величине изменение энергии решетки.

Приравнивая последние выражения друг другу, получим для сжимаемости следующую формулу:

откуда можно вычислить показатель степени потенциала отталкивания:

Этот расчет был произведен для различных кубических кристаллов и дал для довольно олизкую во всех случаях величину, равную приблизительно 9. Поэтому она оудет обычно лежать в основе наших дальнейших рассуждений.

С помощью этого значения мы можем из (69) вычислить энергию нашего кристалла в нормальном состоянии

Полная энергия ионной решетки составляет, таким образом, приблизительно 8/9 величины ее электростатической энергии.

Прямое экспериментальное определение теплоты образования ионной решетки из свободных ионов невозможно. Однако ее можно определить обходным путем из экспериментальных данных, с помощью так называемого кругового процесса Борна.

Например, для из термохимических измерений известна энергия образования кристалла из металлического натрия и газообразного двухатомного хлора. Этот процесс образования можно разложить следующим образом на последовательные частичные процессы:

a) Испарение металлического натрия в одноатомный пар натрия. этом расходуется энергия, равная энергии сублимации натрия.

b) Разложение на атомы. Для этого необходима энергия диссоциации

Образование положительных ионов натрия и отрицательных иоиов хлора, при котором у каждого атома натрия отбывается электрон и передается атому хлора. Необходимая для этого процесса энергия равна разности работы ионизации и электронного сродства

Образование кристалла из ионов Освобождающаяся при этом энергия должна быть равна полной знергии ионной решетки, даваемой формулой (72). Так как остальные величины известны, эта энергия может быть вычислена из этого кругового процесса как разность между упомянутой выше термохимической теплотой образования и суммой энергий, израсходованных в процессах.

В следующей таблице (по Борну) сопоставлены полученные таким образом энергии решеток в кал/моль с энергиями, вычисленными из выражения (72) для различных кристаллических решеток. Видно, что числа хорошо согласуются.

Таблица 2 (см. скан)