Меню
Бесплатно
Главная  /  Suzuki  /  Тригонометрические формулы как решать. Тригонометрические уравнения — формулы, решения, примеры

Тригонометрические формулы как решать. Тригонометрические уравнения — формулы, решения, примеры

Простейшие тригонометрические уравнения решаются, как правило, по формулам. Напомню, что простейшими называются вот такие тригонометрические уравнения:

sinx = а

cosx = а

tgx = а

ctgx = а

х - угол, который нужно найти,
а - любое число.

А вот и формулы, с помощью которых можно сразу записать решения этих простейших уравнений.

Для синуса:


Для косинуса:

х = ± arccos a + 2π n, n ∈ Z


Для тангенса:

х = arctg a + π n, n ∈ Z


Для котангенса:

х = arcctg a + π n, n ∈ Z

Собственно, это и есть теоретическая часть решения простейших тригонометрических уравнений. Причём, вся!) Совсем ничего. Однако, количество ошибок по этой теме просто зашкаливает. Особенно, при незначительном отклонении примера от шаблона. Почему?

Да потому, что масса народу записывает эти буковки, не понимая их смысла совершенно! С опаской записывает, как бы чего не вышло...) С этим надо разобраться. Тригонометрия для людей, или люди для тригонометрии, в конце концов!?)

Разберёмся?

Один угол у нас будет равен arccos a, второй: -arccos a.

И так будет получаться всегда. При любом а.

Если не верите, наведите курсор мышки на картинку, или коснитесь рисунка на планшете.) Я изменил число а на какое-то отрицательное. Всё равно, один угол у нас получился arccos a, второй: -arccos a.

Следовательно, ответ можно всегда записать в виде двух серий корней:

х 1 = arccos a + 2π n, n ∈ Z

х 2 = - arccos a + 2π n, n ∈ Z

Объединяем эти две серии в одну:

х= ± arccos а + 2π n, n ∈ Z

И все дела. Получили общую формулу для решения простейшего тригонометрического уравнения с косинусом.

Если вы понимаете, что это не какая-то сверхнаучная мудрость, а просто сокращённая запись двух серий ответов, вам и задания "С" будут по плечу. С неравенствами, с отбором корней из заданного интервала... Там ответ с плюсом/минусом не катит. А если отнестись к ответу делово, да разбить его на два отдельных ответа, всё и решается.) Собственно, для этого и разбираемся. Что, как и откуда.

В простейшем тригонометрическом уравнении

sinx = а

тоже получается две серии корней. Всегда. И эти две серии тоже можно записать одной строчкой. Только эта строчка похитрее будет:

х = (-1) n arcsin a + π n, n ∈ Z

Но суть остаётся прежней. Математики просто сконструировали формулу, чтобы вместо двух записей серий корней, сделать одну. И всё!

Проверим математиков? А то мало ли...)

В предыдущем уроке подробно разобрано решение (безо всяких формул) тригонометрического уравнения с синусом:

В ответе получились две серии корней:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Если мы будем решать это же уравнение по формуле, получим ответ:

х = (-1) n arcsin 0,5 + π n, n ∈ Z

Вообще-то, это недоделанный ответ.) Ученик обязан знать, что arcsin 0,5 = π /6. Полноценный ответ будет:

х = (-1) n π /6 + π n, n ∈ Z

Тут возникает интересный вопрос. Ответ через х 1 ; х 2 (это правильный ответ!) и через одинокий х (и это правильный ответ!) - одно и то же, или нет? Сейчас узнаем.)

Подставляем в ответ с х 1 значения n =0; 1; 2; и т.д., считаем, получаем серию корней:

х 1 = π/6; 13π/6; 25π/6 и так далее.

При такой же подстановке в ответ с х 2 , получаем:

х 2 = 5π/6; 17π/6; 29π/6 и так далее.

А теперь подставляем значения n (0; 1; 2; 3; 4...) в общую формулу для одинокого х . Т.е возводим минус один в нулевую степень, затем в первую, вторую, и т.д. Ну и, разумеется, во второе слагаемое подставляем 0; 1; 2 3; 4 и т.д. И считаем. Получаем серию:

х = π/6; 5π/6; 13π/6; 17π/6; 25π/6 и так далее.

Вот всё и видно.) Общая формула выдаёт нам точно такие же результаты, что и два ответа по отдельности. Только все сразу, по порядочку. Не обманули математики.)

Формулы для решения тригонометрических уравнений с тангенсом и котангенсом тоже можно проверить. Но не будем.) Они и так простенькие.

Я расписал всю эту подстановку и проверку специально. Здесь важно понять одну простую вещь: формулы для решения элементарных тригонометрических уравнений есть, всего лишь, краткая запись ответов. Для этой краткости пришлось вставить плюс/минус в решение для косинуса и (-1) n в решение для синуса.

Эти вставки никак не мешают в заданиях, где нужно просто записать ответ элементарного уравнения. Но если надо решать неравенство, или далее нужно что-то делать с ответом: отбирать корни на интервале, проверять на ОДЗ и т.п, эти вставочки могут запросто выбить человека из колеи.

И что делать? Да либо расписать ответ через две серии, либо решать уравнение/неравенство по тригонометрическому кругу. Тогда исчезают эти вставочки и жизнь становится легче.)

Можно подвести итоги.

Для решения простейших тригонометрических уравнений существуют готовые формулы ответов. Четыре штуки. Они хороши для мгновенной записи решения уравнения. Например, надо решить уравнения:


sinx = 0,3

Легко: х = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Без проблем: х = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Запросто: х = arctg 1,2 + π n, n ∈ Z


ctgx = 3,7

Одной левой: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Если вы, блистая знаниями, мгновенно пишете ответ:

х= ± arccos 1,8 + 2π n, n ∈ Z

то блистаете вы уже, это... того... из лужи.) Правильный ответ: решений нет. Не понимаете, почему? Прочитайте, что такое арккосинус. Кроме того, если в правой части исходного уравнения стоят табличные значения синуса, косинуса, тангенса, котангенса, - 1; 0; √3; 1/2; √3/2 и т.п. - ответ через арки будет недоделанным. Арки нужно обязательно перевести в радианы.

А если уж вам попалось неравенство, типа

то ответ в виде:

х πn, n ∈ Z

есть редкая ахинея, да...) Тут надо по тригонометрическому кругу решать. Чем мы и займёмся в соответствующей теме.

Для тех, кто героически дочитал до этих строк. Я просто не могу не оценить ваши титанические усилия. Вам бонус.)

Бонус:

При записи формул в тревожной боевой обстановке, даже закалённые учёбой ботаны частенько путаются, где πn, а где 2π n. Вот вам простой приёмчик. Во всех формулах стоит πn. Кроме единственной формулы с арккосинусом. Там стоит 2πn. Два пиэн. Ключевое слово - два. В этой же единственной формуле стоят два знака в начале. Плюс и минус. И там, и там - два.

Так что, если вы написали два знака перед арккосинусом, легче вспомнить, что в конце будет два пиэн. А ещё наоборот бывает. Пропустит человек знак ± , доберётся до конца, напишет правильно два пиэн, да и спохватится. Впереди-то два знака! Вернётся человек к началу, да ошибку-то и исправит! Вот так.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Требует знания основных формул тригонометрии - сумму квадратов синуса и косинуса, выражение тангенса через синус и косинус и другие. Для тех, кто их забыл или не знает рекомендуем прочитать статью " ".
Итак, основные тригонометрические формулы мы знаем, пришло время использовать их на практике. Решение тригонометрических уравнений при правильном подходе – довольно увлекательное занятие, как, например, собрать кубик Рубика.

Исходя из самого названия видно, что тригонометрическое уравнение – это уравнение, в котором неизвестное находится под знаком тригонометрической функции.
Существуют так называемые простейшие тригонометрические уравнения. Вот как они выглядят: sinх = а, cos x = a, tg x = a. Рассмотрим, как решить такие тригонометрические уравнения , для наглядности будем использовать уже знакомый тригонометрический круг.

sinх = а

cos x = a

tg x = a

cot x = a

Любое тригонометрическое уравнение решается в два этапа: приводим уравнение к простейшему виду и далее решаем его, как простейшее тригонометрическое уравнение.
Существует 7 основных методов, с помощью которых решаются тригонометрические уравнения.

  1. Метод замены переменной и подстановки

  2. Решить уравнение 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Используя формулы приведения получим:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Заменим cos(x + /6) на y для упрощения и получаем обычное квадратное уравнение:

    2y 2 – 3y + 1 + 0

    Корни которого y 1 = 1, y 2 = 1/2

    Теперь идем в обратном порядке

    Подставляем найденные значения y и получаем два варианта ответа:

  3. Решение тригонометрических уравнений через разложение на множители

  4. Как решить уравнение sin x + cos x = 1 ?

    Перенесем все влево, чтобы справа остался 0:

    sin x + cos x – 1 = 0

    Воспользуемся вышерассмотренными тождествами для упрощения уравнения:

    sin x - 2 sin 2 (x/2) = 0

    Делаем разложение на множители:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Получаем два уравнения

  5. Приведение к однородному уравнению

  6. Уравнение является однородным относительно синуса и косинуса, если все его члены относительно синуса и косинуса одной и той же степени одного и того же угла. Для решения однородного уравнения, поступают следующим образом:

    а) переносят все его члены в левую часть;

    б) выносят все общие множители за скобки;

    в) приравнивают все множители и скобки к 0;

    г) в скобках получено однородное уравнение меньшей степени, его в свою очередь делят на синус или косинус в старшей степени;

    д) решают полученное уравнение относительно tg.

    Решить уравнение 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Воспользуемся формулой sin 2 x + cos 2 x = 1 и избавимся от открытой двойки справа:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Делим на cos x:

    tg 2 x + 4 tg x + 3 = 0

    Заменяем tg x на y и получаем квадратное уравнение:

    y 2 + 4y +3 = 0, корни которого y 1 =1, y 2 = 3

    Отсюда находим два решения исходного уравнения:

    x 2 = arctg 3 + k

  7. Решение уравнений, через переход к половинному углу

  8. Решить уравнение 3sin x – 5cos x = 7

    Переходим к x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Пререносим все влево:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Делим на cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Введение вспомогательного угла

  10. Для рассмотрения возьмем уравнение вида: a sin x + b cos x = c ,

    где a, b, c – некоторые произвольные коэффициенты, а x – неизвестное.

    Обе части уравнения разделим на :

    Теперь коэффициенты уравнения согласно тригонометрическим формулам обладают свойствами sin и cos, а именно: их модуль не более 1 и сумма квадратов = 1. Обозначим их соответственно как cos и sin , где – это и есть так называемый вспомогательный угол. Тогда уравнение примет вид:

    cos * sin x + sin * cos x = С

    или sin(x + ) = C

    Решением этого простейшего тригонометрического уравнения будет

    х = (-1) k * arcsin С - + k, где

    Следует отметить, что обозначения cos и sin взаимозаменяемые.

    Решить уравнение sin 3x – cos 3x = 1

    В этом уравнении коэффициенты:

    а = , b = -1, поэтому делим обе части на = 2

Тригонометрические уравнения.

Простейшие тригонометрические уравнения.

Методы решения тригонометрических уравнений.

Тригонометрические уравнения. Уравнение, содержащее неизвестное под знаком тригонометрической функции, называется тригонометрическим .

Простейшие тригонометрические уравнения.



Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида (см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

1. Алгебраический метод. Этот метод нам хорошо известен из алгебры

(метод замены переменной и подстановки).

2. Разложение на множители. Этот метод рассмотрим на примерах.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е. Перенесём все члены уравнения влево:

Sin x + cos x – 1 = 0 ,

Преобразуем и разложим на множители выражение в

Левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е. cos 2 x + sin x · cos x sin 2 x – cos 2 x = 0 ,

Sin x · cos x – sin 2 x = 0 ,

Sin x · (cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е. cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

Cos 4x · (cos 2x – cos 4x ) = 0 ,

Cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3.

Приведение к однородному уравнению. Уравнение называется однородным от носительно sin и cos , если все его члены одной и той же степени относительно sin и cos одного и того же угла . Чтобы решить однородное уравнение, надо:

а ) перенести все его члены в левую часть;

б ) вынести все общие множители за скобки;

в ) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos (или sin ) в старшей степени;

д ) решить полученное алгебраическое уравнение относительно tan .

П р и м е р. Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е. 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

Sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

Tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

Корни этого уравнения: y 1 = - 1, y 2 = - 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу. Рассмотрим этот метод на примере:

П р и м е р. Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е. 6 sin (x / 2) · cos (x / 2) – 5 cos ² (x / 2) + 5 sin ² (x / 2) =

7 sin ² (x / 2) + 7 cos ² (x / 2) ,

2 sin ² (x / 2) – 6 sin (x / 2) · cos (x / 2) + 12 cos ² (x / 2) = 0 ,

tan ² (x / 2) – 3 tan (x / 2) + 6 = 0 ,

. . . . . . . . . .

5. Введение вспомогательного угла. Рассмотрим уравнение вида :

a sin x + b cos x = c ,

Где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.


Примеры:

\(2\sin{⁡x} = \sqrt{3}\)
tg\({3x}=-\) \(\frac{1}{\sqrt{3}}\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими . Их легко решать с помощью () или специальных формул:


Инфографику о решении простейших тригонометрических уравнений смотри здесь: , и .

Пример . Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac{1}{2}\).
Решение:

Ответ: \(\left[ \begin{gathered}x=-\frac{π}{6}+2πk, \\ x=-\frac{5π}{6}+2πn, \end{gathered}\right.\)\(k,n∈Z\)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в .

Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

Пример . Решить уравнение \(\cos⁡x=-1,1\).
Решение: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Ответ : решений нет.


Пример . Решите тригонометрическое уравнение tg\(⁡x=1\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим окружность)
2) Построим оси \(x\) и \(y\) и ось тангенсов (она проходит через точку \((0;1)\) параллельно оси \(y\)).
3) На оси тангенсов отметим точку \(1\).
4) Соединим эту точку и начало координат - прямой.
5) Отметим точки пересечения этой прямой и числовой окружности.
6)Подпишем значения этих точек: \(\frac{π}{4}\) ,\(\frac{5π}{4}\)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

Ответ: \(x=\)\(\frac{π}{4}\) \(+πk\), \(k∈Z\).

Пример . Решите тригонометрическое уравнение \(\cos⁡(3x+\frac{π}{4})=0\).
Решение:


Опять воспользуемся числовой окружностью.
1) Построим окружность, оси \(x\) и \(y\).
2) На оси косинусов (ось \(x\)) отметим \(0\).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: \(-\)\(\frac{π}{2}\),\(\frac{π}{2}\) .
6)Выпишем все значение этих точек и приравняем их к косинуса (к тому что внутри косинуса).

\(3x+\)\(\frac{π}{4}\) \(=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(+2πk\) \(3x+\)\(\frac{π}{4}\) \(=-\)\(\frac{π}{2}\) \(+2πk\)

8) Как обычно в уравнениях будем выражать \(x\).
Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac{1}{4}\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

\(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\) \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\)
\(3x=\)\(\frac{π}{4}\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac{3π}{4}\) \(+2πk\) \(|:3\)
\(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\)

Ответ: \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\) , \(k∈Z\).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и , и особые методы решений уравнений:
- Метод (самый популярный в ЕГЭ).
- Метод .
- Метод вспомогательных аргументов.


Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример . Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
Решение:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Сделаем замену \(t=\cos⁡x\).

Наше уравнение превратилось в типичное . Можно его решить с помощью .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

\(t_1=\)\(\frac{5-3}{4}\) \(=\)\(\frac{1}{2}\) ; \(t_2=\)\(\frac{5+3}{4}\) \(=2\)

Делаем обратную замену.

\(\cos⁡x=\)\(\frac{1}{2}\); \(\cos⁡x=2\)

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на в этих точках.

Ответ: \(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ) . Решите тригонометрическое уравнение \(=0\)

\(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

Есть дробь и есть котангенс – значит надо записать . Напомню, что котангенс это фактически дробь:

ctg\(x=\)\(\frac{\cos⁡x}{\sin⁡x}\)

Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

ОДЗ: ctg\(x ≠0\); \(\sin⁡x≠0\)

\(x≠±\)\(\frac{π}{2}\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

Отметим «нерешения» на числовой окружности.

\(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

Избавимся в уравнении от знаменателя, умножив его на ctg\(x\). Мы можем это сделать, так как выше написали, что ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡{2x}=0\)

Применим формулу двойного угла для синуса: \(\sin⁡{2x}=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Если у вас руки потянулись поделить на косинус – одерните их! Делить на выражение с переменной можно если оно точно не равно нулю (например, такие: \(x^2+1,5^x\)). Вместо этого вынесем \(\cos⁡x\) за скобки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Расщепим» уравнение на два.

\(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

Первое уравнение с решим с помощью числовой окружности. Второе уравнение поделим на \(2\) и перенесем \(\sin⁡x\) в правую часть.

\(x=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Корни, которые получились не входят в ОДЗ. Поэтому их в ответ записывать не будем.
Второе уравнение типичное . Поделим его на \(\sin⁡x\) (\(\sin⁡x=0\) не может быть решением уравнения т.к. в этом случаи \(\cos⁡x=1\) или \(\cos⁡x=-1\)).

Опять используем окружность.


\(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\)

Эти корни не исключаются ОДЗ, поэтому можно их записывать в ответ.

Ответ: \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\).