Меню
Бесплатно
Главная  /  Mitsubishi  /  Зубчатая передача. Виды зубчатых передач Валы и оси

Зубчатая передача. Виды зубчатых передач Валы и оси

  • 7. Основные геометрические параметры эвольвентных зубчатых колес.
  • 8. Кинематические и силовые соотношения прямозубых эвольвентных зубчатых колес.
  • 9. Виды напряжений, по которым проводится проектировочный и проверочный расчет зубчатых колес.
  • 10. Общие сведения о косозубых цилиндрических зубчатых передачах.
  • 11. Понятие об эквивалентном колесе и его параметры.
  • 12. Силы, действующие в косозубой цилиндрической передаче.
  • 13. Общие сведения о конических зубчатых передачах.
  • 14. Ортогональные прямозубые конические зубчатые передачи.
  • 15. Основные сведения о передаче Новикова.
  • 16. Планетарные передачи.
  • 17. Кинематика планетарных передач. Инематика.
  • 18. Условия подбора чисел зубьев планетарных передач.
  • 19. Основные сведения о волновых передачах.
  • 20. Червячные передачи: общие сведения, достоинства и недостатки.
  • 12.2. Достоинства и недостатки червячных передач
  • 21. Кинематические и силовые соотношения архимедовых червячных передач.
  • 22. Критерии работоспособности и особенности расчета червячных передач.
  • 23. Выбор материалов червяков и червячных колес.
  • 24. Охлаждение и смазка червячных редукторов.
  • 25. Общие сведения о фрикционных передачах и вариаторах. Общие сведения
  • Классификация
  • Достоинства и недостатки
  • 26. Основные сведения о передаче «винт-гайка» скольжения.
  • 27. Шарико-винтовые передачи (швп).
  • 28. Основные факторы, определяющие качество фрикционных передач.
  • 29. Ременные передачи: общие сведения, классификация, виды ремней.
  • 14.2. Классификация передач
  • 14.3. Достоинства и недостатки ременных передач трением
  • 30. Силы в ремнях ременных передачах.
  • 31. Напряжения в ремнях ременных передачах.
  • 32. Основные сведения о цепных передачах.
  • 13.2. Достоинства и недостатки цепных передач
  • 13.3 Типы цепей
  • 33. Кинематика и динамика цепной передачи.
  • 34. Критерии работоспособности и расчет цепной передачи.
  • 36. Ориентировочный расчет валов и осей.
  • 37. Проверочный расчет валов и осей.
  • 38. Подшипники скольжения.
  • 39. Режимы трения подшипников скольжения.
  • 40. Расчет подшипников скольжения при полужидкостном трении.
  • 41. Расчет подшипников скольжения при жидкостном трении.
  • 42. Назначение и классификация подшипников качения.
  • 43. Статическая грузоподъемность. Проверка подшипников качения по статической грузоподъемности. Проверка и подбор подшипников по статической грузоподъемности.
  • 44. Динамическая грузоподъемность. Проверка подшипников качения по динамической грузоподъемности.
  • 45. Назначение и классификация муфт.
  • 46. Классификация соединений.
  • 47. Основные сведения о резьбовых соединениях.
  • 48. Классификация резьб.
  • 49. Виды нагружений болтовых соединений.
  • 1. Для соединений стальных и чугунных деталей, без упругих прокладок = 0,2 – 0,3.
  • 2.Для соединений стальных и чугунных деталей с упругими прокладками (асбест, поронит, резина и др.) = 0,4 – 0,5.
  • 3. В уточненных расчетах определяют значения д и б, а затем.
  • 50. Основные понятия о заклепочном соединении.
  • 51. Область применения, преимущества и недостатки сварных соединений.
  • 52. Шпоночные и шлицевые соединения.
  • 4. Основные виды механических передач.

    Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

    Механические передачи вращательного движения делятся:

    По способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

    По соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

    По взаимному расположению осей ведущего и ведомого валов на передачи с параллельными , пресекающимися и перекрещивающимися осями валов.

    Зубчатые передачи

    Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

    Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней , с большим числом зубьев – колесом .

    Планетарные передачи

    Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями. Передача состоит из центрального колеса с наружными зубьями, центрального колеса с внутренними зубьями , водила и сателлитов. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

    Червячные передачи

    Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача состоит из так называемого архимедова червяка , т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40), и червячного колеса .

    Волновые механические передачи

    Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма.

    Волновые зубчатые передачи являются разновидностью планетарных передач, у которых одно из колес гибкое.

    Фрикционные передачи

    Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами .

    Ременные передачи

    Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

    В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную

    Цепные передачи

    Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью и зубчатой цепью Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

    Передача винт-гайка

    Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

    В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

    К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

    Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

    Кулачковые механизмы

    Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

    Виды механических передач и передаточных миханизмов

    Вращательное движение в машинах передается при помощи фрикционной, зубчатой, ременной, цепной и червячной передач. Будем условно называть пару, осуществляющую вращательное движение, колесами. Колесо, от которого передается вращение, принято называть ведущим, а колесо, получающее движение - ведомым.

    Всякое вращательное движение можно измерить оборотами в минуту. Зная число оборотов в минуту ведущего колеса, мы можем определить число оборотов ведомого колеса. Число оборотов ведомого колеса зависит от соотношения диаметров соединенных колес. Если диаметры обоих колес будут одинаковы, то и колеса будут крутиться с одинаковой скоростью. Если диаметр ведомого колеса будет больше ведущего, то ведомое колесо станет крутиться медленнее, и наоборот, если его диаметр будет меньше, оно будет делать больше оборотов. Число оборотов ведомого колеса во столько раз меньше числа оборотов ведущего, во сколько раз его диаметр больше диаметра ведущего колеса.

    Зависимость числа оборотов от диаметров колес.

    В технике при конструировании машин часто приходится определять диаметры колес и число их оборотов. Эти расчеты можно делать на основе простых арифметических пропорций. Например, если мы условно обозначим диаметр ведущего колеса через Д 1 , диаметр ведомого через Д 2 , число оборотов ведущего колеса через n 1 , число оборотов ведомого колеса через n 2 , то все эти величины выражаются простым соотношением:

    Д 2 /Д 1 = n 1 /n 2

    Если нам известны три величины, то, подставив их в формулу, мы легко найдем четвертую, неизвестную величину.

    В технике часто приходится употреблять выражения: "передаточное число " и "передаточное отношение ". Передаточным числом называют отношение числа оборотов ведущего колеса (вала) к числу оборотов ведомого, а передаточным отношением - отношение между числами оборотов колес независимо от того, какое из них ведущее. Математически передаточное число пишется так:

    n 1 /n 2 = i или Д 2 /Д 1 = i

    где i - передаточное число. Передаточное число - величина отвлеченная и размерности не имеет. Передаточное число может быть любым - как целым, так и дробным.

    Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения вращают одно другое. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение, а следовательно, требующая и дополнительную силу для вращения. Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Достоинства фрикционной передачи:
    Простота изготовления тел качения;
    Равномерность вращения и бесшумность работы;
    Возможность бесступенчатого регулирования частоты вращения и включения/выключения передачи на ходу;
    За счет возможностей проскальзывания передача обладает предохранительными свойствами.

    Недостатки фрикционной передачи:
    Проскальзывание, ведущее к непостоянству передаточного числа и потери энергии;
    Необходимость обеспечения прижима.

    Применение фрикционной передачи:
    В машиностроении чаще всего применяют бесступенчатые фрикционные передачи для бесступенчатого регулирования скорости.


    Фрикционные передачи:
    а - лобовая передача, б - угловая передача, в - цилиндрическая передача.

    В самодельных устройствах фрикционная передача может быть широко использована. Особенно приемлемы передачи цилиндрическая и лобовая. Колеса для передач можно делать деревянные. Для лучшего сцепления, рабочие поверхности колес следует "обшить" слоем мягкой резины толщиной в 2-3 мм. Резину можно или прибить мелкими гвоздиками, или приклеить клеем.

    Зубчатая передача

    В зубчатых передачах вращение от одного колеса к другому передается при помощи зубьев. Зубчатые колеса вращаются намного легче фрикционных. Объясняется это тем, что здесь нажима колеса на колесо совсем не требуется. Для правильного зацепления и легкой работы колес профиль зубца делают по определенной кривой, называемой эвольвентой.


    v передавать вращательное движение;

    v изменять число об/мин;

    v увеличивать или уменьшать силу вращения;

    v менять направление вращения.

    В зависимости от формы колес и их взаимного расположения различают следующие виды зубчатых передач : цилиндрическая, коническая, червячная, реечная, планетарная.

    Цилиндрическая передача состоит из двух или нескольких цилиндрических колес установленных на параллельных валах.

    Рис. 215 Цилиндрическая передача

    Коническая передача состоит из двух конических колес, находящихся на двух валах, оси которых пересекаются. Угол пересечения может быть любой, но обычно он равен 90º.

    Рис. 216 Коническая передача

    Червячная передача (зубчато-винтовая передача) - механическая передача, осуществляющаяся зацеплением червяка и сопряжённого с ним червячного колеса. Червячная передача применяется для перекрещивающихся, но не пересекающихся валов. Червячная передача состоит из винта (червяка) и зубчатого колеса.


    Рис. 217 Червячная передача

    Червячная передача обладает рядом уникальных свойств. Во-первых, она может быть использована только в качестве ведущего зубчатого колеса, и никак не может быть ведомой шестерней. Это очень удобно для механизмов, которые нужны для поднятия и удержания груза без нагрузки на двигатель. Существует много возможных применений этого свойства червячной передачи, например, во многих видах подъемных кранов и погрузчиков, железнодорожных барьеров, разводных мостах, лебедках. Очень широко червячная передача LEGO используется в конструкции захвата для робота-манипулятора.

    Во-вторых, характерной особенностью червячной передачи является то, что она имеет большое передаточное отношение. Поэтому червячные передачи используются как понижающее всякий раз, когда есть очень высокий крутящий момент.

    Вывод: червячная передача имеет ряд преимуществ:

    v Занимает мало места.

    v Имеет свойство самоторможения.

    v Во много раз снижает число об/мин.

    v Увеличивает силу привода.

    v Изменяет направление вращательного движения на 90°.

    Реечная передача – механическая передача, преобразующая вращательное движение зубчатого колеса в поступательное движение рейки и наоборот. Рейку можно рассматривать как вытянутую в прямую линию окружность большого зубчатого колеса.


    Следует отметить, что существует в наборах LEGO коронная шестерня и шестерни с внутренним зацеплением.

    Коронная шестерня - это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой шестерней.

    Рис. 220 Соединения короной шестерни и цилиндрических колес с 8 и 24 зубьями

    Шестерни с внутренним зацеплением имеют зубья, нарезанные с внутренней стороны . При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше коэффициент полезного действия*. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в приводе робота манипулятора.

    Рис. 221 Шестерня с внутренним зацеплением

    Особенность шестерни с внутренним зацеплением LEGO - наличие зубьев на внешней стороне , поэтому ее можно использовать в передачах как цилиндрическое колесо с 56 зубьями.

    Рис. 222 Способы соединения колеса с внутренним зацеплением с цилиндрической шестерней, колесом с короной и «червяком»

    Рис. 223 Способ соединения колеса с внутренним зацеплением с мотором

    Планетарная передача

    Планетарная передача (дифференциальная передача) - механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую (коронную) шестерню, имеющую внутреннее зацепление с планетарными шестернями.

    Такая передача нашла широкое применение, например, она используется в кухонной технике или автоматической коробке передач автомобиля.

    Основными элементами планетарной передачи можно считать следующие:

    v Солнечная шестерня: находится в центре;

    v Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;

    v Кольцевая шестерня: внешнее зубчатое колесо , имеющее внутреннее зацепление с планетарными шестернями.

    Рис. 224 Пример планетарной передачи: водило неподвижно, солнце ведущее, корона ведомая

    В планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй - ведомым. Третий элемент при этом неподвижен (таблица 8).

    Таблица 8. Элементы планетарной передачи

    Неподвижный

    Ведущий

    Ведомый

    Передача

    Корона

    Понижающая

    Повышающая

    Солнце

    Понижающая

    Повышающая

    Водило

    Реверс, понижающая

    Реверс, повышающая

    Реверс - изменение хода механизма на обратный, противоположный.

    Рис. 225 Пример конструкции планетарной передачи: корона неподвижна, водило ведущее, солнце ведомое

    Механические передачи с гибкими элементами

    Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передается с помощью гибких звеньев. В качестве гибких звеньев применяются ремни, шнуры, цепи различных конструкций.

    Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношение со ступенчатым или плавным изменением его величины.

    Ременная передача

    Ременная передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего. Ременная передача мало чувствительна к взаимному положению ведущего и ведомого валов. Их можно даже повернуть под прямым углом друг к другу или ремень надеть в виде перекрещенной петли, и тогда направление вращения ведомого вала измениться.

    Рис. 226 Ременная передача

    Цепная передача

    Рис. 227 Цепная передача

    Фрикционная передача

    Рис. 228 Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения одно вращает другое.

    Фрикционные передачи широко применяются в машинах. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение в машине, а, следовательно, требующая и дополнительную силу для вращения.

    Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу, дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Проект «Автоматический шлагбаум»:

    1. Сконструируйте модель автоматического шлагбаума.

    Технические условия:

    б) в конструкции используется червячная передача;

    в) автоматическое поднимание и опускание стрелы шлагбаума должно происходить при помощи ультразвукового датчика.

    4. В рамках робототехнического кружка изготовьте автоматический шлагбаум.

    6. В рабочей тетради составьте описание автоматического шлагбаума.

    Проект «Поворотная платформа»:

    1. Сконструируйте модель поворотной платформы.

    Технические условия:

    б) в конструкции используется шестерня с внутренним зацеплением;

    в) автоматический поворот платформы происходит с помощью датчика касания (датчика освещенности).

    4. В рамках робототехнического кружка изготовьте поворотную платформу.

    6. В рабочей тетради составьте описание поворотной платформы.

    Проект «Раздвижные автоматические двери»:

    1. Сконструируйте модель раздвижных автоматических дверей.

    Технические условия:

    а) в модель входит один сервомотор, микроконтроллер NXT;

    б) в конструкции используется реечная передача;

    в) автоматическое открывание дверей происходит при помощи ультразвукового датчика (датчика освещенности).

    2. В рабочей тетради выполните эскиз модели.

    3. Обсудите проект с учителем.

    4. В рамках робототехнического кружка изготовьте модель раздвижных автоматических дверей.

    5. С помощью языка программирования NXT-G напишите программу для управления моделью.

    6. В рабочей тетради составьте описание модели раздвижных автоматических дверей.

    Зубчатые передачи. Общие сведения

    Зубчатой передачей называется трехзвенный механизм, в котором два подвижных зубчатых звена образуют с неподвижным звеном вращательную или поступательную пару. Зубчатое звено передачи может представлять собой колесо, сектор или рейку. Зубчатые передачи служат для преобразования вращательных движений или вращательного движения в поступательное.

    Все применяемые здесь и в дальнейшем термины, определения и обозначения, относящиеся к зубчатым передачам, соответствуют ГОСТ 16530-83 «Передачи зубчатые», ГОСТ 16531-83 «Передачи зубчатые цилиндрические» и ГОСТ 19325-73 «Передачи зубчатые конические».

    Зубчатое зацепление представляет собой высшую кинематическую пару, так как зубья теоретически соприкасаются между собой по линиям или точкам, причем меньшее зубчатое колесо пары называется шестерней, а большее-колесом. Сектор цилиндрического зубчатого колеса бесконечно большого диаметра называется зубчатой рейкой.

    Зубчатые передачи можно классифицировать по многим признакам, а именно: по расположению осей валов (с параллельными, пересекающимися, скрещивающимися осями и соосные); по условиям работы (закрытые - работающие в масляной ванне и открытые-работающие всухую или смазываемые периодически); по числу ступеней (одноступенчатые, многосту­пенчатые); по взаимному расположению колес (с внешним и внутренним зацеплением); по изменению частоты вращения валов (понижающие, повышающие); по форме поверхности, на которой нарезаны зубья (цилиндрические, конические); по окружной скорости колес (тихоходные при скорости до 3 м/с, среднескоростные при скорости до 15 м/с, быстроходные при скорости выше 15 м/с); по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями); по форме профиля зуба (эвольвентные, круговые, циклоидальные).

    Кроме перечисленных существуют передачи с гибкими зубчатыми колесами, называемые волновыми.

    Основные виды зубчатых передач (рис.) с параллельными осями: а - цилиндрическая прямозубая, б- ци­линдрическая косозубая, в- шевронная, г - с внутренним зацеплением; с пересекающимися осями: д- коническая прямозубая, е - коническая с тангенциальными зубьями, ж - коническая с криволинейными зубьями; со скрещивающимися осями: з- гипоидная, и- винтовая; к - зубчато-реечная прямозубая (гипоидная и винтовая передачи относятся к категории гиперболоидных передач).

    Зубчатая передача, оси которой расположены под углом 90°, называется ортогональной.

    Достоинство зубчатых передач заключается прежде всего в том, что при одинаковых характеристиках они значительно более компактны, по сравнению с другими видами передач. Кроме того, зубчатые передачи имеют более высокий к. п. д.(до 0,99 в одной ступени), сохраняют постоянство передаточного числа, создают относительно небольшую нагрузку на опоры валов, имеют большую долговечность и надежность работы в широких диапазонах мощностей (до десятков тысяч киловатт), окружных скоростей (до 150 м/с) и передаточных чисел (до нескольких сотен).

    Недостатки зубчатых передач: сложность изготовления точных передач, возможность возникновения шума и вибраций при недостаточной точности изготовления и сборки, невозможность бесступенчатого регулирования частоты вращения ведомого вала.

    Зубчатые передачи являются наиболее распространенными типами механических передач и находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т. д.; в приборостроении, часовой промышленности и др. Годовое производство зубчатых колес в нашей стране исчисляется сотнями миллионов штук, а габаритные размеры их от долей миллиметра до десяти и более метров. Такое широкое распространение зубчатых передач делает необходи­мой большую научно-исследовательскую работу по вопросам конструирования и технологии изготовления зубчатых колес и всестороннюю стандартизацию в этой области. В настоящее время стандартизованы термины, определения, обозначения, элементы зубчатых колес и зацеплений, основные параметры передач, расчет геометрии, расчет цилиндрических эвольвентных передач на прочность, инструмент для нарезания зубьев и многое другое.

    Основная кинематическая характеристика всякой зубчатой передачи - передаточное число, определяемое по стандарту как отношение числа зубьев колеса к числу зубьев шестерни и обозначаемое и, следовательно,

    Определение передаточного отношения остается таким же, как для других механических передач, т. е.

    Потери энергии в зубчатых передачах зависят от типа передачи, точности ее изготовления, смазки и складываются из потерь на трение в зацеплении, в опорах валов и (для закрытых передач) потерь на перемешивание и разбрызгивание масла. Потерянная механическая энергия переходит в тепловую, что в некоторых случаях делает необходимым тепловой расчет передачи.

    Потери в зацеплении характеризуются коэффициентом , потери в одной паре подшипников - коэффициентом и потери на перемешивание и разбрызгивание масла - коэффициентом . Общий к. п. д. одноступенчатой закрытой передачи

    Ориентировочно = 0,96...0,98 (закрытые передачи), = 0,95...0,96 (открытые передачи), = 0,99...0,995 (подшипники качения), = 0,96...0,98 (подшипники скольжения), = 0,98...0,99.

    Поверхности взаимодействующих зубьев колес, обеспечивающие заданное передаточное отношение, называются сопряженными. Процесс передачи движения в кинематической паре, образованной зубчатыми колесами, называется зубчатым зацеплением.

    Цилиндрическая прямозубая передача

    На рис. изображено цилиндрическое колесо с прямыми зубьями. Часть зубчатого колеса, содержащая все зубья, называется венцом; часть колеса, насаживаемая на вал, называется ступицей. Делительная окружность диаметром d делит зуб на две части - головку зуба высотой h a и ножку зуба высотой h f , высота зуба h = h а + h f . Расстояние между одноименными профилями соседних зубьев, измеренное по дуге делительной окружности, называется окружным делительным шагом зубьев и обозначается р. Шаг зубьев слагается из окружной толщины зуба s и ширины впадины е. Длина хорды, соответствующая окружной толщине зуба, называется толщиной по хорде и обозначается . Линейная величина, в раз меньшая окружного шага, называется окружным делительным модулем зубьев, обозначается т и измеряется в миллиметрах (впредь слова «окружной делительный» в терминах будем опускать)

    Модуль зубьев - основной параметр зубчатого колеса. Для пары колес, находящихся в зацеплении, модуль должен быть одинаковым. Модули зубьев для цилиндрических и конических передач регламентированы ГОСТ 9563-60*. Значения стандартных модулей от 1 до 14 мм приведены в табл.

    Модули, мм

    1-й ряд 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12

    2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14

    Примечание . При назначении модулей 1-й ряд следует предпочитать 2-му.

    Все основные параметры зубчатых колес выражают через модули, а именно: шаг зубьев

    диаметр делительной окружности

    Последняя формула позволяет определить модуль как число миллиметров диаметра делительной окружности, приходящихся на один зуб колеса.

    В соответствии со стандартным исходным контуром для цилиндрических зубчатых колес высота головки зуба h a = т, высота ножки зуба h f = 1,25т. Высота зубьев цилинд­рических колес

    h = h а + h f = 2,25m .

    Диаметр вершин зубьев

    d a = m (z + 2),

    диаметр впадин

    d f = m (z – 2,5).

    Расстояние между торцами зубьев колеса называется шириной венца. Контакт пары зубьев цилиндрической прямозубой передачи теоретически происходит по линии, параллельной оси; длина линии контакта равна ширине венца. В процессе работы передачи пара зубьев входит в зацепление сразу по всей длине линии контакта (что сопровождается ударом зубьев), после чего эта линия перемещается по высоте зуба, оставаясь параллельной оси.

    Межосевое расстояние цилиндрической передачи с внешним и внутренним зацеплением

    называется делительным межосевым расстоянием (знак минус для внутреннего зацепления). Если межосевое расстояние отличается от делительного, то оно обозначается а w .

    ГОСТ 1643-81 на допуски для цилиндрических зубчатых колес и передач установлены двенадцать степеней точности, обозначенных цифрами (первая степень - наивысшая). Для каждой степени точности установлены нормы: кинематической точности, плавности работы и контакта зубьев колес и передач.

    В процессе изготовления зубчатых передач неизбежны погрешности в шаге, толщине и профиле зубьев, неизбежно радиальное биение венца, колебание межосевого расстояния при беззазорном зацеплении контролируемого и измерительного колес и т. д. Все это создает кинематическую погрешность в углах поворота ведомого колеса, выражаемую линейной величиной, измеряемой по дуге делительной окружности. Кинематическая погрешность определяется как разность между действительным и расчетным углом поворота ведомого колеса. Нормы кинематической точности регламентируют допуски на кинематическую погрешность и ее составляющие за полный оборот колеса. Нормы плавности устанавливают допуски на циклическую (многократно повторя­ющуюся за один оборот) кинематическую погрешность колеса и ее составляющие. Нормы контакта устанавливают размеры суммарного пятна контакта зубьев передачи (в процентах от размеров зубьев) и допуски на параметры, влияющие на этот контакт.

    В машиностроении зубчатые передачи общего назначения изготовляют по 6-9-й степеням точности. Цилиндрические прямозубые колеса 6-й степени точности применяют при окружных скоростях колес до 15 м/с; 1-й степени-до 10 м/с; 8-й степени - до 6 м/с; 9-й - до 2 м/с.

    Рассмотрим силы, действующие в зацеплении прямозубой цилиндрической передачи. При изображенном на этом рисунке контакте пары зубьев в полюсе П скольжение (следовательно, и трение) отсутствует, зацепление будет однопарным и силовое взаимодействие колес будет заключаться в передаче по линии давления (нормали NN ) силы нормального давления . Разложим эту силу на две взаимно перпендикулярные составляющие и , называемые соответственно окружным и ра­диальным усилиями, тогда

    , ,

    где - угол зацепления.

    Если известен передаваемый вращающий момент Т и диаметр d делительной окружности, то

    (так как = 20°, то ).

    Сила , вызывает вращение ведомого колеса и изгибает вал колеса в горизонтальной плоскости, сила г изгибает вал в вертикальной плоскости.

    Цилиндрические передачи с косыми и шевронными зубьями

    Косозубыми называют колеса, у которых теоретическая делительная линия зуба является частью винтовой линии постоянного шага (теоретической делительной линией называется линия пересечения боковой поверхности зуба с делительной цилиндрической поверхностью). Линия зуба косозубых колес мо­жет иметь правое и левое направ­ление винтовой линии. Угол наклона линии зуба обозначается .

    Косозубая передача с параллельными осями имеет противоположное направление зубьев ведущего и ведомого колес и относится к категории цилиндрических зубчатых передач, так как начальные поверхности таких зубчатых колес представляют собой боковую поверхность цилиндров. Передача с косозубыми колесами, оси которых скрещиваются, имеет одинаковое направление зубьев обоих колес и называется винтовой зубчатой передачей, которая относится к категории гиперболоидных зубчатых передач, так как начальные поверхности таких зубчатых колес являются частями однополостного гиперболоида вращения; делительные поверхности этих колес - цилиндрические.

    У косозубых передач контактные линии расположены наклонно по отношению к линии зуба, поэтому в отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепенно, что обеспечивает плавность зацепления и значительное снижение динамических нагрузок и шума при работе передачи. Поэтому косозубые передачи по сравнению с прямозубыми допускают значительно большие предельные окружные скорости колес. Так, например, косозубые колеса 6-й степени точности применяют при окружной скорости до 30 м/с; 7-й степени-до 15 м/с; 8-й степени - до 10 м/с; 9-й - до 4 м/с.

    Силу нормального давления в зацеплении косозубых колес можно разложить на три взаимно перпендикулярные составляющие (рис. 7.10,б): окружную силу , радиальную силу и осевую силу , равные:

    где Т- передаваемый вращающий момент; - угол зацепления.

    Наличие осевой силы - существенный недостаток косозубых передач. Во избежание больших осевых сил в косозубой передаче угол наклона линии зуба ограничивают значениями =8...20°, несмотря на то, что с увеличением увеличивается прочность зубьев, плавность работы передачи, ее нагрузочная способность.

    В современных передачах косозубые колеса имеют преимущественное распространение.

    Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями, называется шевронным. Часть венца с зубьями одинакового направления называется полушевроном. Из технологических соображений шевронные колеса изготовляют двух типов: с дорожкой посредине колеса (а) и без дорожки (б). В шевронном колесе осевые силы на полушевронах, направленные в противоположные стороны, взаимно уравновешиваются внутри колеса и на валы и опоры валов не передаются. Поэтому у шевронных колес угол наклона зубьев принимают в пределах = 25...40°, в результате чего повышается прочность зубьев, плавность работы передачи и ее нагрузочная способность. Поэтому шевронные колеса применяют в мощных быстроходных закрытых передачах. Недостатком шевронных колес является высокая трудоемкость и себестоимость изготовления.

    Геометрические, кинематические и прочностные расчеты шевронной и косозубой передач аналогичны.

    Материалы цилиндрических колес

    Материалы для изготовления зубчатых колес в машиностроении- стали, чугуны и пластмассы; в приборостроении зубчатые колеса изготовляют также из латуни, алюминиевых сплавов и др. Выбор материала определяется назначением передачи, условиями ее работы, габаритами колес и даже типом производства (единичное, серийное или массовое) и технологическими соображениями.

    Общая современная тенденция в машиностроении - стремление к снижению материалоемкости конструкций, увеличению мощности, быстроходности и долговечности машины. Эти требования приводят к необходимости уменьшения массы, габаритов и повышения нагрузочной способности силовых зубчатых передач. Поэтому основные материалы для изготовления зубчатых колес - термообработанные углеродистые и легированные стали, обеспечивающие высокую объемную прочность зубьев, а также высокую твердость и износостойкость их активных поверхностей.

    Критерии работоспособности зубчатых колес и

    Под действием сил нормального давления и трения зуб колеса испытывает сложное напряженное состояние, но решающее влияние на его работоспособность оказывают два фактора: контактные напряжения и напряжения изгиба , которые действуют на зуб только во время нахождения его в зацеплении и являются, таким образом, повторно-переменными.

    Повторно-переменные напряжения изгиба вызывают появление усталостных трещин у растянутых волокон основания зуба (место концентрации напряжений), которые с течением времени приводят к его поломке (рис. а, б).

    Повторно-переменные контактные напряжения и силы трения приводят к усталостному изнашиванию активных поверхностей зубьев. Так как сопротивление усталостному изнашиванию у опережающих поверхностей выше, чем у отстающих, то нагрузочная способность головок зубьев выше, чем ножек. Этим объясняется отслаивание и выкрашивание частиц материала на активной поверхности ножек зубьев (рис. в ) при отсутствии видимых усталостных повреждений головок. Усталостное изнашивание активных поверхностей зубьев характерно для работы закрытых передач.

    В открытых передачах и в передачах с плохой (загрязняемой) смазкой усталостное изнашивание опережается абразивным износом активных поверхностей зубьев (рис. г).

    В тяжелонагруженных и высокоскоростных передачах в зоне контакта зубьев возникает высокая температура, способствующая разрыву масляной пленки и образованию металлического контакта, в результате чего происходит заедание зубьев (рис. д), о резьбовых соединениях Резьбовым называют соединение... шаг резьбы, как и шаг зубьев зубчатых колес, будем обозначать строчной буквой... , упорная, прямоугольная) служат для передачи движения и применяются в передачах винт - гайка, которые будут...

  • Зубчатые передачи (3)

    Реферат >>

    ... зубчатых передачах 1.1 Общие сведения В зубчатой передаче движение передается с помощью зацеп ления пары зубчатых колес (рис. 1, а - в). Меньшее зубчатое ... масел. 2 ЦИЛИНДРИЧЕСКИЕ КОСОЗУБЫЕ ПЕРЕДАЧИ 1.1 Общие сведения Цилиндрические колеса, у которых...

  • Детали машин. Конспект лекций. Основные требования к конструкции деталей машин

    Конспект >> Промышленность, производство

    Натягом (прессовые соединения) Общие сведения Соединение двух деталей... . Поэтому ниже излагаются краткие сведения о контактных напряжениях и... потери, свойственные как зубчатой передаче , так и передаче винт-гайка. Общий К. П. Д. червячной передачи η , (5.25) ...

  • Валы и оси. Общие сведения

    Научная статья >> Промышленность, производство

    И оси. Общие сведения Вал - деталь машин, предназначенная для передачи крутящего момента вдоль... вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др... валов может нарушить нормальную работу зубчатых колес и подшипников, следовательно, ...

  • Подавляющее большинство механических передач имеет в своей основе зубчатые зацепления. Другими словами, в зубчатой передаче усилие передается благодаря зацеплению пары зубчатых колес (зубчатой пары). Зубчатые передачи активно используются, позволяя изменять скорость вращения, направление, моменты.

    Основной задачей является преобразования вращательного движения, а также изменение расположения элементов и ряд других функций, которые необходимы для работы узлов, агрегатов и механизмов. Далее мы рассмотрим типы зубчатых передач, их особенности, а также достоинства зубчатых передач и их недостатки.

    Читайте в этой статье

    Как уже было сказано, зубчатые зацепления (передачи зацеплением) позволяют эффективно реализовать передачу вращательного движения, которое поступает от двигателя.

    Параллельно осуществляется преобразование движения, изменяется частота вращения, величина , направление осей вращения и т.д. Чтобы выполнять такие задачи, существуют разные виды передач. Прежде всего, их принято классифицировать согласно особенностям расположения осей вращения.

    • Цилиндрическая передача. Такая передача состоит из пары, которая обычно имеет разное количество зубьев, а оси зубчатых колес цилиндрической передачи являются параллельными. Также отношение чисел зубьев принято называть передаточным отношением. Меньшее по размеру зубчатое колесо называется шестерней, тогда как большое называют зубчатым колесом.

      В том случае, когда шестерня ведущая, при этом передаточное число оказывается больше единицы, такая передача является понижающей, так как зубчатое колесо будет вращаться с меньшей частотой, чем шестерня. Также одновременно при условии уменьшения угловой скорости происходит увеличение крутящего момента на валу. В случае, когда передаточное число оказывается меньше единицы, такая передача буде повышающей.

    • Коническое зацепление. Особенностью является то, что оси зубчатых колес будут пересекаться, вращение передается между валами, расположенными под тем или иным углом. Передача будет понижающей или повышающей с учетом того, какое из колес оказывается ведущим в передаче данного типа.
    • Червячная передача. Такая передача отличается тем, что имеет оси вращения, которые скрещиваются. Большое передаточное число получается в результате соотношения числа зубьев колеса, а также числа заходов червяка. Сами червяки бывают однозаходными, двухзаходными или четырехзаходными. Также важной особенностью червячной передачи считается то, что в этом случае вращение передается исключительно от червяка на червячное колесо. При этом обратный процесс является нереализуемым по причине ильного трения. Данная система имеет способность самостоятельно затормаживаться благодаря применению червячных редукторов (например, в механизмах для подъема грузов).
    • Реечное зацепление, которое удается реализовать при помощи зубчатого колеса и рейки. Такое решение позволяет эффективно преобразовать вращательное движение в поступательное и обратно. Например, в автомобиле решение обычно используется в устройстве рулевого управления (рулевая рейка).
    • Винтовые передачи. Такие передачи используются в том случае, если валы скрещиваются. При этом контакт зубьев зацепления точечный, сами зубья сильно изнашиваются под нагрузками. Передачи данного типа зачастую используются в разных приборах.
    • Планетарная передача (). Данный тип зацепления отличается от остальных тем, что в нем использованы зубчатые колеса, имеющие подвижные оси. Как правило, присутствует жестко закрепленное наружное колесо, которое имеет внутреннюю резьбу.

      Еще имеется центральное колесо, а также водило с сателлитами. Указанные элементы перемещаются по окружности неподвижного колеса, благодаря чему они вращают центральное колесо. В этом случае происходит передача вращения от водила на центральное колесо или же обратно.

    Зубчатые передачи могут иметь наружное или внутреннее зацепление. Если с наружным все понятно (в данном случае схема зубчатой передачи предполагает, что зубья расположены сверху), то при внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности. Также вращение возможно только в одном направлении.

    Рассмотрев выше основные виды зацеплений (зубчатых передач), следует добавить, что при этом указанные типы могут использоваться в разных сочетаниях с учетом особенностей тех или иных кинематических схем.

    • Еще зубчатые передачи могут отличаться по форме зубьев, профилю и типу. С учетом отличий принято выделять следующие зацепления: эвольвентные, круговые и циклоидальные. При этом чаще всего используются именно эвольвентные зацепления, так как технологически данное решение превосходит другие аналоги.

    Прежде всего, такие зубья нарезаются при помощи простого реечного инструмента. Указанное зацепление имеет постоянное передаточное отношение, которое никак не зависит от степени смещения межцентрового расстояния. Недостатком зацепления является только то, что во время передачи большой мощности сказывается небольшое пятно контакта в двух выпуклых поверхностях зубьев. Результат — разрушение поверхности и другие дефекты материала.

    Еще добавим, что круговое зацепление отличается тем, что выпуклые зубья шестерни сцеплены с вогнутыми колесами. Это позволяет значительно увеличить пятно контакта, однако также сильно возрастает сила трения в указанных парах.

    • Также можно отдельно выделить сами виды зубчатых колес: прямозубые, косозубые, шевронные и криволинейные. Прямозубые являются наиболее распространенными типами пар, они просты в разработке, дешевы в изготовлении и надежны в рамках эксплуатации. Линия контакта в данном случае параллельна оси вала. Такие колеса отличаются дешевизной производства, однако способны передать сравнительно небольшой максимальный крутящий момент по сравнению с косозубыми и шевронными зубчатыми колесами.

    Косозубые колеса оптимально применять в том случае, если частота вращения очень высокая. Данное решение позволяет добиться плавности и снижения шума. Минусом принято считать большую нагрузку на подшипники, так как возникают осевые усилия.

    Шевронные колеса имеют ряд преимуществ, свойственных косозубым парам. Прежде всего, они не создают дополнительной нагрузки на подшипники осевыми усилиями (силы разнонаправлены).

    Криволинейные колеса обычно используют в том случае, когда необходимы максимальные передаточные отношения. Такие колеса создают меньше шума при работе, а также более эффективно работают на изгиб.

    Из чего изготавливаются зубчатые колеса и шестерни

    Как правило, в основе зубчатого колеса лежит сталь. При этом шестерня должна иметь большую прочность, так как сами колеса могут иметь разные характеристики по прочности.

    По этой причине шестерни изготавливаются из разных материалов, а также такие изделия проходят дополнительную термическую обработку и/или комплексную химическую и температурную обработку.

    Например, шестерни, которые выполнены из легированной стали, также проходят процесс упрочнения поверхности, в рамках которого может быть использован метод, позволяющий добиться желаемых характеристик (азотирование, цементация или цианирование). Если для изготовления шестерни используется углеродистая сталь, такой материал проходит поверхностную закалку.

    Что касается зубьев, для них предельно важна прочность поверхности, а также сердцевина должна быть мягкой и вязкой. Данные характеристики позволяют избежать излома и быстрого износа рабочей нагруженной поверхности. Еще добавим, что колесные пары механизмов, где нет больших нагрузок и высокой частоты вращения, изготавливают из чугуна. Также можно встретить в качестве материала для изготовления колесных пар бронзу, латунь и даже всевозможные виды пластика.

    Сами зубчатые колеса выполняются из заготовки, полученной методом литья или штамповки. Затем применяется метод нарезки зубьев. Нарезка осуществляется путем использования методов копирования, обкатки. Метод обкатки дает возможность изготовить зубья разной конфигурации при помощи одного инструмента (долбяк, червячные фрезы, рейка).

    Чтобы осуществить нарезку методом копирования, требуются пальцевые фрезы. После нарезки выполняется термическая обработка. Если же нужно зацепление высокой точности, после такой термообработки дополнительно выполняется шлифовка и обкатка.

    Прежде всего, среди достоинств зубчатой передачи можно выделить:

    Также выделяют и недостатки зубчатой передачи:

    • повышенные требования к качеству изготовления и точности установки;
    • при высокой скорости вращения возникает шум по причине возможных неточностей при изготовлении шага и профиля зубьев;
    • повышенная жесткость не позволяет эффективно компенсировать динамические нагрузки, в результате чего возникает разрушение и пробуксовки, появляются дефекты;

    Напоследок отметим, что во время обслуживания механизм нужно осматривать, производя проверку состояния зубчатых колес, шестерен и зубьев на предмет повреждений, трещин, сколов и т.д.

    Также проверяется само зацепление и его качество (часто используется краска, которая наносится на зубья). Нанесение краски позволяет изучить величину пятна контакта, а также расположение относительно высоты зуба. Для регулировки зацепления применяются прокладки, которые ставятся в подшипниковые узлы.

    Подведем итоги

    Как видно, зубчатая передача является достаточно распространенным решением, которое используется в различных узлах, агрегатах и механизмах. С учетом того, что существует несколько типов таких передач, перед использованием одного или другого вида, в рамках проектирования конструкторы учитывают кинематические и силовые характеристики работы разных механизмов и агрегатов.

    С учетом ряда особенностей и нагрузок подбирается вид зубчатой передачи, ее габариты, определяется степень нагрузки. После этого выполняется подбор материалов для изготовления зубчатых пар, а также способы необходимой обработки и нарезки зубьев. При расчетах отдельно учитывается модуль зацепления, величины смещений, количество зубьев шестерни и колеса, расстояние между осями, ширина венцов и т.д.

    При этом основными условиями, которые определяют срок службы зубчатой передачи и ее ресурс, принято считать общую износостойкость поверхностей зубьев, а также прочность зубьев на изгиб. Чтобы получить нужные характеристики, в рамках проектирования производства зубчатых механизмов указанным особенностям уделяется отдельное повышенное внимание.

    Читайте также

    Гипоидная передача в устройстве трансмиссии автомобиля: что такое гипоидная передача, в чем ее особенности и отличия, а также преимущества и недостатки.

  • Дифференциал коробки передач: что это такое, устройство дифференциала, виды дифференциалов. Как работает дифференциал КПП в трансмиссии автомобиля.
  • Модуль m и число зубьев z являются основными величинами, определяющими зубчатые зацепления. Значение модулей для всех передач - величина стандартизированная, выраженная, как видно из формулы m = d/z, в миллиметрах. Ниже преведены числовые величины стандартных модулей, применяемые при изготовлении зубчатых колес, по ГОСТ 9563-60 (СТ СЭВ 310-76):

    1-й ряд, мм.: 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,2; 0,25; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4,5; 6; 8; 10; 12; 16; 20; 25; 32; 40; 50; 60; 80; 100.

    2-й ряд, мм.: 0,055; 0,07; 0,09; 0,11; 0,22; 0,28; 0,35; 0,45; 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28; 36; 45; 55; 70; 90.

    При назначении величин модулей первый ряд следует предпочитать второму.

    Зубчатые передачи. Общие сведения и классификация зубчатых передач

    Механизм, в котором два подвижных звена являются зубчатыми ко лесами, образующими с неподвижным звеном вращательную или поступатель ную пару, называют зубчатой передачей (рис. 1).

    Рис. 1. Виды зубчатых передач: а, б, в - цилиндрические зубчатые передачи с внешним зацеплением; г - реечная передача; д - цилиндрическая передача с внутренним зацеплением; е - зубчатая винтовая передача; ж, з, и - конические зубчатые передачи; к - ги поидная передача

    В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г).

    Зубчатые передачи - наиболее распространенный тип передач в современном машиностроении и приборостроении; их применяют в широких диапазонах скоростей (до 275 м/с), мощностей (до десятков тысяч киловатт).

    Основные достоинства зубчатых передач по сравнению с другими передачами:

    Технологичность, постоянство передаточного числа;

    Высокая нагрузочная способность;

    Высокий КПД (до 0,97-0,99 для одной пары колес);

    Малые габаритные размеры по сравнению с другими видами передач при равных условиях;

    Большая надежность в работе, простота обслуживания;

    Сравнительно малые нагрузки на валы и опоры.

    К недостаткам зубчатых передач следует отнести:

    Невозможность бесступенчатого изменения передаточного числа;

    Высокие требования к точности изготовления и монтажа;

    Шум при больших скоростях; плохие амортизирующие свойства;

    Громоздкость при больших расстояниях между осями ведущего и ведомого валов;

    Потребность в специальном оборудовании иинструменте для нарезания зубьев;

    Зубчатая передача не предохраняет машину от возможных опасных перегрузок.

    Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1):

    По взаимному расположению осей колес - с параллельными осями (цилиндрические, см. рис. 1, а-д), с пересекающимися осями (ко­нические, см. рис. 1, ж-и), со скрещивающимися осями (винтовые, см. рис. 1, е, к);

    По расположению зубьев относительно образующих колес - прямозубые, косозубые, шевронные и с криволинейным зубом;

    По конструктивному оформлению - открытые и закрытые;

    По окружной скорости - тихоходные (до 3 м/с), для средних скоростей (3-15 м/с), быстроходные (св. 15 м/с);

    По числу ступеней - одно- имногоступенчатые;

    По расположению зубьев в передаче и колесах - внешнее, внутрен­нее (см. рис. 1, д) и реечное зацепление (см. рис. 1, г);

    По форме профиля зуба - с эвольвентными, круговыми;

    По точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

    Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации.

    Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния.

    Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентро­вого расстояния.

    Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

    Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

    Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

    Конические передачи применяют только в тех случаях, когда это необходимо по условиям компновки машины; винтовые - лишь в специальных случаях.

    Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.

    Большинство механических передач включает в себя зубчатые зацепления. Зубчатые передачи используются для изменения скоростей вращательного движения, направлений вращения и моментов. Они служат для преобразования вращательного движения в поступательное и наоборот, для изменения пространственного расположения элементов трансмиссии и осуществления многих других функций, необходимых для работы машин и механизмов.

    Зубчатые зацепления применяются для передачи вращательного движения от двигателя к исполнительному органу.

    При этом производятся необходимые преобразования движения, изменение частоты вращения, крутящего момента, направления осей вращения.

    Для всего этого служат различные виды передач. Классификация видов зубчатых передач по расположению осей вращения:

    Нужно различать наружное и внутреннее зацепление. При внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности окружности, и вращение происходит в одном направлении. Это основные виды зацеплений.

    Существует огромное количество возможностей для их сочетания и использования в различных кинематических схемах.

    Форма зуба

    Зацепления различаются по профилю и типу зубьев . По форме зуба различают эвольвентные, круговые и циклоидальные зацепления. Наиболее часто используемыми являются эвольвентные зацепления. Они имеют технологическое превосходство. Нарезка зубьев может производиться простым реечным инструментом. Эти зацепления характеризуются постоянным передаточным отношением, не зависящим от смещения межцентрового расстояния. Но при больших мощностях проявляются недостатки, связанные с небольшим пятном контакта в двух выпуклых поверхностях зубьев. Это может приводить к поверхностным разрушениям и выкрашиванию материала поверхностей.

    В круговых зацеплениях выпуклые зубья шестерни сцепляются с вогнутыми колесами и пятно контакта значительно увеличивается. Недостатком этих передач является то, что появляется трение в колёсных парах. Виды зубчатых колёс:

    Прямозубые колёсные пары имеют наибольшее распространение. Их легко проектировать, изготавливать и эксплуатировать .

    Материалы для изготовления

    Основной материал для изготовления колёсных пар - это сталь. Шестерня должна иметь более высокие прочностные характеристики, поэтому колёса часто изготавливают из разных материалов и подвергают разной термической или химико-термической обработке. Шестерни, изготовленные из легированной стали, подвергают поверхностному упрочнению методом азотирования, цементации или цианирования. Для углеродистых сталей используется поверхностная закалка.

    Зубья должны обладать высокой поверхностной прочностью, а также более мягкой и вязкой сердцевиной. Это предохранит их от излома и износа поверхности. Колёсные пары тихоходных машин могут быть изготовлены из чугуна. В различных производствах применяются также бронза, латунь и различные пластики.

    Способы обработки

    Зубчатые колёса изготавливаются из штампованных или литых заготовок методом нарезания зубьев . Нарезание производится методами копирования и обкатки. Обкатка позволяет одним инструментом вырезать зубья различной конфигурации. Инструментами для нарезания могут быть долбяки, червячные фрезы или рейки. Для нарезания методом копирования используются пальцевые фрезы. Термообработка производится после нарезки, но для высокоточных зацеплений после термообработки применяется ещё шлифовка или обкатка.

    Обслуживание и расчёт

    Техобслуживание заключается в осмотре механизма, проверке целостности зубьев и отсутствия сколов. Проверка правильности зацепления производится при помощи краски, наносимой на зубья. Изучается величина пятна контакта и его расположение по высоте зуба. Регулировка производится установкой прокладок в подшипниковых узлах.

    Сначала надо определиться с кинематическими и силовыми характеристиками, необходимыми для работы механизма. Выбирается вид передачи, допустимые нагрузки и габариты, затем подбираются материалы и термообработка. Расчёт включает в себя выбор модуля зацепления, после этого подбираются величины смещений, число зубьев шестерни и колеса, межосевое расстояние, ширина венцов. Все значения можно выбирать по таблицам или использовать специальные компьютерные программы.

    Главными условиями, необходимыми для длительной работы зубчатых передач, являются износостойкость контактных поверхностей зубьев и их прочность на изгиб.

    Достижению хороших характеристик и уделяется основное внимание при проектировании и изготовлении зубчатых механизмов.