Меню
Бесплатно
Главная  /  Suzuki  /  Расчет фильтров нч и вч баттерворта презентация. Расчёт фильтра с характеристикой Баттерворта

Расчет фильтров нч и вч баттерворта презентация. Расчёт фильтра с характеристикой Баттерворта

Фильтр Баттерворта

Передаточная функция фильтра нижних частот Баттерворта n -го порядка характеризуется выражением:

Амплитудно-частотная характеристика фильтра Баттерворта обладает следующими свойствами:

1) При любом порядке n значение АЧХ

2) на частоте среза щ=щ с

АЧХ ФНЧ монотонно убывает с ростом частоты. По этой причине фильтры Баттерворта называют фильтрами с максимально плоскими характеристиками. На рисунке 3 показаны графики амплитудно-частотных характеристик ФНЧ Баттерворта 1-5 порядков. Очевидно, что чем больше порядок фильтра, тем точнее аппроксимируется АЧХ идеального фильтра нижних частот.

Рисунок 3 - АЧХ для фильтра Баттерворта нижних частот порядка от 1 до 5

На рисунке 4 представлена схемная реализация ФВЧ Баттерворта.

Рисунок 4 - ФВЧ-II Баттерворта

Достоинством фильтра Баттерворта является максимально гладкая АЧХ на частотах полосы пропускания и ее снижение практически до нуля на частотах полосы подавления. Фильтр Баттерворта -- единственный из фильтров, сохраняющий форму АЧХ для более высоких порядков (за исключением более крутого спада характеристики на полосе подавления) тогда как многие другие разновидности фильтров (фильтр Бесселя, фильтр Чебышева, эллиптический фильтр) имеют различные формы АЧХ при различных порядках.

Однако в сравнении с фильтрами Чебышева I и II типов или эллиптическим фильтром, фильтр Баттерворта имеет более пологий спад характеристики и поэтому должен иметь больший порядок (что более трудно в реализации) для того, чтобы обеспечить нужные характеристики на частотах полосы подавления.

Фильтр Чебышева

Квадрат модуля передаточной функции фильтра Чебышева определяется выражением:

где - полином Чебышева. Модуль передаточной функции фильтра Чебышева равен единице на тех частотах, где обращается в нуль.

Фильтры Чебышева обычно используются там, где требуется с помощью фильтра небольшого порядка обеспечить требуемые характеристики АЧХ, в частности, хорошее подавление частот из полосы подавления, и при этом гладкость АЧХ на частотах полос пропускания и подавления не столь важна.

Различают фильтры Чебышева I и II родов.

Фильтр Чебышева I рода. Это более часто встречающаяся модификация фильтров Чебышева. В полосе пропускания такого фильтра видны пульсации, амплитуда которых определяется показателем пульсации е. В случае аналогового электронного фильтра Чебышева его порядок равен числу реактивных компонентов, использованных при его реализации. Более крутой спад характеристики может быть получен если допустить пульсации не только в полосе пропускания, но и в полосе подавления, добавив в передаточную функцию фильтра нулей на мнимой оси jщ в комплексной плоскости. Это, однако, приведёт к меньшему эффективному подавлению в полосе подавления. Полученный фильтр является эллиптическим фильтром, также известным как фильтр Кауэра.

АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка представлена на рисунке 5.

Рисунок 5 - АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка

Фильтр Чебышева II рода (инверсный фильтр Чебышева) используется реже, чем фильтр Чебышева I рода ввиду менее крутого спада амплитудной характеристики, что приводит к увеличению числа компонентов. У него отсутствуют пульсации в полосе пропускания, однако присутствуют в полосе подавления.

АЧХ для фильтра Чебышева нижних частот II рода четвёртого порядка представлена на рисунке 6.

Рисунок 6 - АЧХ для фильтра Чебышева нижних частот II рода

На рисунке 7 представлены схемные реализации ФВЧ Чебышева I и II порядка.

Рисунок 7 - ФВЧ Чебышева: а) I порядка; б) II порядка

Свойства частотных характеристик фильтров Чебышева:

1) В полосе пропускания АЧХ имеет равноволновой характер. На интервале (-1?щ?1) имеется n точек, в которых функция достигает максимального значения, равного 1, или минимального значения, равного. Если n нечетно, если n четно;

2) значение АЧХ фильтра Чебышева на частоте среза равно

3) При функция монотонно убывает и стремится к нулю.

4) Параметр е определяет неравномерность АЧХ фильтра Чебышева в полосе пропускания:

Сравнение АЧХ фильтров Баттерворта и Чебышева показывает, что фильтр Чебышева обеспечивает большее ослабление в полосе пропускания, чем фильтр Баттерворта такого же порядка. Недостаток фильтров Чебышева заключается в том, что их фазочастотные характеристики в полосе пропускания значительно отличаются от линейных.

Для фильтров Баттерворта и Чебышева имеются подробные таблицы, в которых приведены координаты полюсов и коэффициенты передаточных функций различных порядков.



При анализе фильтров и при расчете их параметров всегда используются некоторые стандартные термины и имеет смысл придерживаться их с самого начала.


Предположим, что требуется фильтр нижних частот с плоской характеристикой в полосе пропускания и резким переходом к полосе подавления. Окончательный же наклон характеристики в полосе задерживания всегда будет 6n дБ/октава, где n - число «полюсов». На каждый полюс необходим один конденсатор (или катушка индуктивности), поэтому требования к окончательной скорости спада частотной характеристики фильтра, грубо говоря, определяют его сложность.


Теперь предположим, что вы решили использовать 6-полюсный фильтр нижних частот. Вам гарантирован окончательный спад характеристики на высоких частотах 36 дБ/октава. В свою очередь теперь можно оптимизировать схему фильтра в смысле обеспечения максимально плоской характеристики в полосе пропускания за счет уменьшения крутизны перехода от полосы пропускания к полосе задерживания. С другой стороны, допуская некоторую неравномерность характеристики в полосе пропускания, можно добиться более крутого перехода от полосы пропускания к полосе задерживания. Третий критерий, который может оказаться важным, описывает способность фильтра пропускать сигналы со спектром, лежащим в полосе пропускания, без искажений их формы, вызываемых фазовыми сдвигами. Можно также интересоваться временем нарастания, выбросом и временем установления.


Известны методы проектирования фильтров, пригодные для оптимизации любой из этих характеристик или их комбинаций. Действительно разумный выбор фильтра происходит не так, как описано выше; как правило, сначала задаются требуемая равномерность характеристики в полосе пропускания и необходимое затухание на некоторой частоте вне полосы пропускания и другие параметры. После этого выбирается наиболее подходящая схема с количеством полюсов, достаточным для того, чтобы удовлетворялись все эти требования. В следующих нескольких разделах будут рассмотрены три наиболее популярных типа фильтров, а именно фильтр Баттерворта (максимально плоская характеристика в полосе пропускания), фильтр Чебышева (наиболее крутой переход от полосы пропускания к полосе подавления) и фильтр Бесселя (максимально плоская характеристика времени запаздывания). Любой из этих типов фильтров можно реализовать с помощью различных схем фильтров; некоторые из них мы обсудим позже Все они равным образом годятся для построения фильтров нижних и верхних частот и полосовых фильтров.


Фильтры Баттерворта и Чебышева. Фильтр Баттерворта обеспечивает наиболее плоскую характеристику в полосе пропускания, что достигается ценой плавности характеристики в переходной области т.е. между полосами пропускания и задерживания. Как будет показано дальше у него также плохая фазочастотная характеристика. Его амплитудно-частотная характеристика задается следующей формулой:
U вых /U вх = 1/ 1/2 ,
где n определяет порядок фильтра (число полюсов). Увеличение числа полюсов дает возможность сделать более плоским участок характеристики в полосе пропускания и увеличить крутизну спада от полосы пропускания к полосе подавления, как это показано на рис. 5.10.


Рис. 5.10 Нормированные характеристики фильтров нижних частот Баттерворта. Обратите внимание увеличение крутизны спада характеристики с увеличением порядка фильтра.


Выбирая фильтр Баттерворта, мы ради максимально плоской характеристики поступаемся всем остальным. Его характеристика идет горизонтально, начиная от нулевой частоты, перегиб ее начинается на частоте среза ƒ с - эта частота обычно соответствует точке -3 дБ.


В большинстве применений самым существенным обстоятельством является то, что неравномерность характеристики в полосе пропускания не должна превышать некоторой определенной величины, скажем 1 дБ. Фильтр Чебышева отвечает этому требованию, при этом допускается некоторая неравномерность характерности во всей полосе пропускания, но при этом сильно увеличивается острота ее излома. Для фильтра Чебышева задают число полюсов и неравномерность в полосе пропускания. Допуская увеличение неравномерности в полосе пропускания, получаем более острый излом. Амплитудно-частотная характеристика этого фильтра задается следующим соотношением
U вых /U вх = 1/ 1/2 ,
где С n - полином Чебышева первого рода степени n, а ε - константа, определяющая неравномерность характеристики в полосе пропускания. Фильтр Чебышева, как и фильтр Баттерворта имеет фазочастотные характеристики, далекие от идеальных. На рис. 5.11 представлены для сравнения характеристики 6-полюсных фильтров нижних частот Чебышева и Баттерворта. Как легко заметить, и тот, и другой намного лучше 6-полюсного RC-фильтра.


Рис. 5.11. Сравнение характеристик некоторых обычно применяемых 6-полюсных фильтров нижних частот. Характеристики одних и тех же фильтров изображены и в логарифмическом (вверху), и в линейном (внизу) масштабе. 1 - фильтр Бесселя; 2 - фильтр Баттерворта; 3 - фильтр Чебышева (пульсации 0,5 дБ).


На самом деле фильтр Баттерворта с максимально плоской характеристикой в полосе пропускания не столь привлекателен, как это может показаться, поскольку в любом случае приходится мириться с некоторой неравномерностью в полосе пропускания (для фильтра Баттерворта это будет постепенное понижение характеристики при приближении к частоте ƒ с, а для фильтра Чебышева-пульсации, распределенные по всей полосе пропускания). Кроме того, активные фильтры, построенные из элементов, номиналы которых имеют некоторый допуск, будут обладать характеристикой, отличающейся от расчетной, а это значит, что в действительности на характеристике фильтра Баттерворта всегда будет иметь место некоторая неравномерность в полосе пропускания. На рис. 5.12 проиллюстрировано влияние наиболее нежелательных отклонений значений емкости конденсатора и сопротивления резистора на характеристику фильтра.


Рис. 5.12. Влияние изменений параметров элементов на характеристику активного фильтра.


В свете вышеизложенного весьма рациональной структурой является фильтр Чебышева. Иногда его называют равноволновым фильтром, так как его характеристика в области перехода имеет большую крутизну за счет того, что по полосе пропускания распределено несколько равновеликих пульсаций, число которых возрастает вместе с порядком фильтра. Даже при сравнительно малых пульсациях (порядка 0,1 дБ) фильтр Чебышева обеспечивает намного большую крутизну характеристики в переходной области, чем фильтр Баттерворта. Чтобы выразить эту разницу количественно, предположим, что требуется фильтр с неравномерностью характеристики в полосе пропускания не более 0,1 дБ и затуханием 20 дБ на частоте, отличающейся на 25% от граничной частоты полосы пропускания. Расчет показывает, что в этом случае требуется 19-полюсный фильтр Баттерворта или всего лишь 8-полюсный фильтр Чебышева.


Мысль о том, что можно мириться с пульсациями характеристики в полосе пропускания ради увеличения крутизны переходного участка, доводится до своего логического завершения в идее так называемого эллиптического фильтра (или фильтра Кауэра), в котором допускаются пульсации характеристики как в полосе пропускания, так и в полосе задерживания ради обеспечения крутизны переходного участка даже большей, чем у характеристики фильтра Чебышева. С помощью ЭВМ можно сконструировать эллиптические фильтры так же просто, как и классические фильтры Чебышева и Баттерворта. На рис. 5.13 представлено графическое задание амплитудно-частотной характеристики фильтра. В этом случае (фильтр нижних частот) определяются допустимый диапазон коэффициента передачи фильтра (т.е. неравномерность) в полосе пропускания, минимальная частота, на которой характеристика покидает полосу пропускания, максимальная частота, где характеристика переходит в полосу задерживания, и минимальное затухание в полосе задерживания.


Рис. 5.13. Задание параметров частотной характеристики фильтра.


Фильтры Бесселя. Как было установлено ранее, амплитудно-частотная характеристика фильтра не дает о нем полной информации. Фильтр с плоской амплитудно-частотной характеристикой может иметь большие сдвиги фаз. В результате этого форма сигнала, спектр которого лежит в полосе пропускания, будет искажена при прохождении через фильтр. В ситуации, при которой форма сигнала имеет первостепенное значение, желательно иметь в распоряжении линейно-фазовый фильтр (фильтр с постоянным временем запаздывания). Предъявление к фильтру требования обеспечения линейного изменения сдвига фазы в зависимости от частоты эквивалентно требованию постоянства времени запаздывания для сигнала, спектр которого расположен в полосе пропускания, т. е. отсутствия искажений формы сигнала. Фильтр Бесселя (также называемый фильтром Томсона) имеет наиболее плоский участок кривой времени запаздывания в полосе пропускания, подобно тому как фильтр Баттерворта имеет наиболее плоскую амплитудно-частотную характеристику. Чтобы понять, какое улучшение во временной области дает фильтр Бесселя, посмотрите на рис. 5.14, где изображены нормированные по частоте графики времени запаздывания для 6-полюсных фильтров нижних частот Бесселя и Баттерворта. Плохая характеристика времени запаздывания фильтра Баттерворта обуславливает появление эффектов типа выброса при прохождении через фильтр импульсных сигналов. С другой же стороны, за постоянство времен запаздывания у фильтра Бесселя приходится расплачиваться тем, что его амплитудно-частотная характеристика имеет еще более пологий переходной участок между полосами пропускания и задерживания, чем даже у характеристики фильтра Баттерворта.


Рис. 5.14. Сравнение временных запаздываний для 6-полосных фильтров нижних частот Бесселя (1) и Баттерворта (2). Фильтр Бесселя благодаря своим превосходным свойствам во временной области дает наименьшее искажение формы сигнала.


Существует много различных способов проектирования фильтров, в которых делаются попытки улучшить рабочие параметры фильтра Бесселя во временной области, частично жертвуя постоянством времени запаздывания ради уменьшения времени нарастания и улучшения амплитудно-частотной характеристики. Фильтр Гаусса имеет почти столь же хорошие фазочастотные характеристики, как и фильтр Бесселя, но при улучшенной переходной характеристике. Другой интересный класс представляют собой фильтры, позволяющие добиться одинаковых по величине пульсаций кривой времени запаздывания в полосе пропускания (аналогично пульсациям амплитудно-частотной характеристики фильтра Чебышева) и обеспечивающие примерно одинаковое запаздывание для сигналов со спектром вплоть до полосы задерживания. Еще один подход к созданию фильтров с постоянным временем запаздывания - это применение всепропускающих фильтров, называемых иначе корректорами во временной области. Эти фильтры обладают постоянной амплитудно-частотной характеристикой, а сдвиг фазы может меняться согласно конкретным требованиям. Таким образом, их можно применять для выравнивания времени запаздывания любых фильтров, в частности фильтров Баттерворта и Чебышева.


Сравнение фильтров. Несмотря на ранее высказанные замечания о переходной характеристике фильтров Бесселя, он все же обладает очень хорошими свойствами во временной области по сравнению с фильтрами Баттерворта и Чебышева. Сам фильтр Чебышева при его весьма подходящей амплитудно-частотной характеристике имеет наихудшие параметры во временной области из всех этих трех типов фильтров. Фильтр Баттерворта дает компромисс между частотами и временными характеристиками. На рис. 5.15 дана информация по рабочим характеристикам этих трех типов фильтров во временной области, дополняющая приведенные ранее графики амплитудно-частотных характеристик. По этим данным можно сделать вывод, что в тех случаях, когда важны параметры фильтра во временной области, желательно применять фильтр Бесселя.


Рис. 5.15. Сравнение переходных процессов 6-полюсных фильтров нижних частот. Кривые нормированы приведением значения ослабления 3 дБ к частоте 1 Гц. 1 - фильтр Бесселя; 2 - фильтр Баттерворта; 3 - фильтр Чебышева (пульсации 0.5 дБ).


1 Определим порядок фильтра. Порядок фильтра это число реактивных элементов в ФНЧ и ФВЧ.

где
- функция Баттерворта, соответствующая допустимой частоте.

- допустимое затухание.

2 Чертим схему фильтра полученного порядка. При практической реализации предпочтительны схемы с меньшим количеством индуктивностей.

3 Рассчитываем постоянные преобразования фильтра.

, мГн

, нФ

4 Для идеального фильтра с сопротивлением генератора 1 Ом, сопротивление нагрузки 1 Ом,
составлена таблица нормированных коэффициентов фильтра Баттерворта. В каждой строке таблицы коэффициенты симметричны, к середине увеличиваются, а затем уменьшаются.

5 Чтобы найти элементы схемы, необходимо постоянные преобразования умножить на коэффициент из таблицы.

Порядок фильтра

Порядковые номера фильтра m

Рассчитать параметры фильтра низких частот Баттерворта, если ПП=0,15 кГц, =25 кГц,=30 дБ,
=75 Ом. Найти
для трех точек.

29.3 Фвч Баттерворта.

Фильтры ФВЧ – это четырехполюсники, у кторых в диапазоне (
) затухание мало, а в диапазоне (
) – велико, то есть фильтр должен пропускать в нагрузку токи верхних частот.

Так как ФВЧ должен пропускать токи высоких частот, то на пути тока, идущего в нагрузку, должен стоять частотно зависимый элемент, который хорошо пропускает токи высоких частот и плохо токи низких частот. Таким элементом является конденсатор.

Ф
ВЧ Т-образный

ФВЧ П-образный

Конденсатор ставят последовательно с нагрузкой, так как
и с ростом частоты
уменьшается, следовательно токи высоких частот легко проходят в нагрузку через конденсатор. Катушку индуктивности ставят параллельно нагрузке, так как
и с увеличением частоты увеличивается
, поэтому токи низких частот замыкаются через индуктивности и не попадут в нагрузку.

Расчет ФВЧ Баттерворта аналогичен расчету ФНЧ Баттерворта, проводится по тем же формулам, только



.

Рассчитать фильтр верхних частот ФВЧ Баттерворта, если
Ом,
кГц,
дБ,
кГц. Найти:
.

Тема занятия 30: Полосовые и режекторные фильтры Баттерворта.

Страница 1 из 2

Определим порядок фильтра исходя из требуемых условий по графику для затухания в полосе задерживания в книге Г.Лэм «Аналоговые и цифровые фильтры» гл.8.1 стр.215.

Понятно, что для необходимого затухания достаточно фильтра 4 порядка. График приведён для случая, когда w с =1 рад/с, а соответственно частота, на которой нужно необходимое затухание – 2 рад/с (соответственно 4 и 8 кГц). Общий график для передаточной функции фильтра Баттерворта:

Определяем схемную реализацию фильтра:

активный фильтр нижних частот четвёртого порядка со сложной отрицательной обратной связью:

Чтобы желаемая схема имела желаемую амплитудно-частотную характеристику, входящие в неё элементы могут быть подобраны с не очень высокой точностью, что является плюсом данной схемы.

активный фильтр нижних частот четвёртого порядка с положительной обратной связью:

В данной схеме коэффициент усиления операционного усилителя должен иметь строго определённое значение, а коэффициент передачи данной схемы будет не больше 3. Поэтому данную схему можно отбросить.

активный фильтр нижних частот четвёртого порядка с омической отрицательной обратной связью

Данный фильтр построен на четырех операционниках, что увеличивает помехи и сложность расчёта данной схемы, поэтому её мы также отбрасываем.

Из рассмотренных схем мы выбираем фильтр со сложной отрицательной обратной связью.

Расчёт фильтра

Определение передаточной функции

Записываем табличные значения коэффициентов для фильтра Баттерворта четвёртого порядка:

a 1 =1.8478 b 1 =1

a 2 =0.7654 b 2 =1

(см. У.Титце, К.Шенк «Полупроводниковая схемотехника» табл.13.6 стр. 195)

Общее выражение передаточной функции для ФНЧ четвёртого порядка:

(см. У.Титце, К.Шенк «Полупроводниковая схемотехника» табл.13.2 стр. 190 и форм. 13.4 стр. 186).

Передаточная функция первого звена имеет вид:

Передаточная функция второго звена имеет вид:

где w с – круговая частота среза фильтра, w с =2pf c .

Расчёт номиналов деталей

Приравняв коэффициенты выражений (2) и (3) коэффициентам выражения (1) получим:

Коэффициенты передачи постоянного сигнала для каскадов, их произведение А 0 должно быть равно 10 по заданию. Они отрицательные, так как данные каскады являются инвертирующими, однако их произведение даёт положительный коэффициент передачи.

Для расчёта схемы лучше задаться емкостями конденсаторов, при этом для того, чтобы значение R 2 было действительным, должно выполняться условие

и соответственно

Исходя из этих условий выбирается С 1 =С 3 =1 нФ, С 2 =10 нФ, С 4 =33 нФ.

Рассчитываем значения сопротивлений для первого каскада:

Значения сопротивлений второго каскада:

Выбор ОУ

При выборе ОУ необходимо учитывать диапазон частот фильтра: частота единичного усиления ОУ (на которой коэффициент усиления равен единице) должна быть больше произведения частоты среза и коэффициента усиления фильтра K у.

Поскольку максимальный коэффициент усиления равен 3.33, а частота среза 4 кГц, то этому условию удовлетворяют почти все существующие ОУ.

Другим важным параметром ОУ является его входное сопротивление. Оно должно быть больше десятикратного максимального сопротивления резистора схемы.

Максимальное сопротивление в схеме равно 99.6 кОм, следовательно входное сопротивление ОУ должно быть не менее 996 кОм.

Так же необходимо учитывать нагрузочную способность ОУ. Для современных ОУ минимальное сопротивление нагрузки составляет 2 кОм. Учитывая, что сопротивление R1 и R4 равны соответственно 33.2 и 3.09 кОм, выходной ток операционного усилителя будет заведомо меньше максимально допустимого.

В соответствии с вышеприведёнными требованиями выбираем ОУ К140УД601 со следующими паспортными данными (характеристиками):

K у. min = 50 000

R вх = 1 МОм

В данной статье мы поговорим про фильтр Баттерворта, рассмотрим порядки фильтров, декады и октавы, подробно разберем фильтр низких частот Баттерворта третьего порядка с расчетом и схемой.

Введение

В устройствах, которые используют фильтры для формирования частотного спектра сигнала, например, в системах связи или управления, форма или ширина спада, также называемая «полосой перехода», для простого фильтра первого порядка может быть слишком длинной или необходимы широкие и активные фильтры, разработанные с более чем одним «заказом». Эти типы фильтров обычно известны как фильтры «высокого порядка» или «n- го порядка».

Порядок фильтров

Сложность или тип фильтра определяется «порядком» фильтров и зависит от количества реактивных компонентов, таких как конденсаторы или катушки индуктивности в его конструкции. Мы также знаем, что скорость спада и, следовательно, ширина полосы перехода зависит от порядкового номера фильтра и что для простого фильтра первого порядка он имеет стандартную скорость спада 20 дБ / декаду или 6 дБ / октава.

Тогда для фильтра, имеющего n- й порядковый номер, он будет иметь последующую скорость спада 20n дБ / декаду или 6n дБ / октаву. Таким образом:

  • фильтр первого порядка имеет скорость спада 20 дБ / декаду (6 дБ / октава)
  • фильтр второго порядка имеет скорость спада 40 дБ / декаду (12 дБ / октава)
  • фильтр четвертого порядка имеет частоту спада 80 дБ / декада (24 дБ / октава) и т. д.

Фильтры высокого порядка, такие как третий, четвертый и пятый, обычно формируются путем каскадного объединения одиночных фильтров первого и второго порядка.

Например, два фильтра нижних частот второго порядка могут быть соединены каскадно для получения фильтра нижних частот четвертого порядка и так далее. Несмотря на то, что порядок фильтра, который может быть сформирован, не ограничен, при увеличении порядка увеличиваются его размер и стоимость, а также снижается его точность.

Декады и октавы

Последний комментарий о Декадах и Октавах . По шкале частот декада — это десятикратное увеличение (умножение на 10) или десятикратное уменьшение (деление на 10). Например, от 2 до 20 Гц представляют одну декаду, тогда как от 50 до 5000 Гц представляют две декады (от 50 до 500 Гц, а затем от 500 до 5000 Гц).

Октава — это удвоение (умножить на 2) или уменьшение в два раза (деление на 2) по шкале частот. Например, от 10 до 20 Гц представляет одну октаву, а от 2 до 16 Гц — это три октавы (от 2 до 4, от 4 до 8 и, наконец, от 8 до 16 Гц), каждый раз удваивая частоту. В любом случае, логарифмические шкалы широко используются в частотной области для обозначения значения частоты при работе с усилителями и фильтрами, поэтому важно понимать их.

Поскольку резисторы, определяющие частоту, все равны, как и конденсаторы, определяющие частоту, отсечка или угловая частота (ƒ C) для первого, второго, третьего или даже для фильтра четвертого порядка также должны быть равны и найдены, используя знакомое уравнение:

Как и в случае фильтров первого и второго порядка, фильтры верхних частот третьего и четвертого порядка формируются простым взаимным обменом положений определяющих частоту компонентов (резисторов и конденсаторов) в эквивалентном фильтре нижних частот. Фильтры высокого порядка можно спроектировать, следуя процедурам, которые мы видели ранее в руководствах по фильтру нижних частот и фильтрам верхних частот. Однако общий коэффициент усиления фильтров высокого порядка является фиксированным, поскольку все компоненты, определяющие частоту, являются одинаковыми.

Аппроксимации фильтра

До сих пор мы рассматривали низкочастотные и высокочастотные схемы фильтра первого порядка, их результирующие частотные и фазовые характеристики. Идеальный фильтр дал бы нам спецификации максимального усиления полосы пропускания и плоскостности, минимального затухания полосы пропускания, а также очень крутой полосы пропускания, чтобы остановить спад полосы (полоса перехода), и поэтому очевидно, что большое количество сетевых откликов будет удовлетворять эти требования.

Неудивительно, что в линейном дизайне аналоговых фильтров есть ряд «аппроксимационных функций», в которых используется математический подход для наилучшего приближения передаточной функции, которая требуется нам для проектирования фильтров.

Такие конструкции известны как Эллиптический , Баттерворт , Чебышев , Бессель , Кауэр и многие другие. Из этих пяти «классических» функций аппроксимации линейного аналогового фильтра только фильтр Баттерворта и особенно конструкция фильтра Баттерворта нижних частот будут рассматриваться здесь как его наиболее часто используемая функция.

Низкочастотный фильтр Баттерворта

Частотная характеристика аппроксимационной функции фильтра Баттерворта также часто называется «максимально плоской» (без пульсаций) характеристикой, поскольку полоса пропускания спроектирована так, чтобы иметь частотную характеристику, которая является настолько плоской, насколько это математически возможно, от 0 Гц (DC) до частоты среза -3 дБ без пульсаций. Более высокие частоты за пределами точки отсечки снижаются до нуля в полосе останова на уровне 20 дБ / декада или 6 дБ / октава. Это потому, что он имеет «фактор качества», «Q» всего 0,707.

Однако одним из основных недостатков фильтра Баттерворта является то, что он достигает этой плоскостности полосы пропускания за счет широкой полосы перехода, когда фильтр изменяется от полосы пропускания к полосе остановки. Он также имеет плохие фазовые характеристики. Идеальная частотная характеристика, называемая фильтром «кирпичной стены», и стандартные аппроксимации Баттерворта для различных порядков фильтра приведены ниже.

Обратите внимание, что чем выше порядок фильтра Баттерворта, тем больше количество каскадных ступеней в конструкции фильтра и тем ближе фильтр подходит к идеальному отклику «кирпичной стены».

Однако на практике идеальная частотная характеристика Баттерворта недостижима, поскольку она вызывает чрезмерную пульсацию в полосе пропускания.

Где обобщенное уравнение, представляющее фильтр Баттерворта «n-го» порядка, частотная характеристика дается как:

Где: n представляет порядок фильтра, ω равно 2πƒ, а ε — максимальное усиление полосы пропускания (A max).

Если A max определено на частоте, равной угловой точке отсечки -3 дБ (ƒc), тогда ε будет равно единице и, следовательно, ε 2 также будет равно единице. Однако, если вы теперь хотите определить A max при другом значении усиления по напряжению, например, 1 дБ или 1.1220 (1 дБ = 20 * logA max), тогда новое значение ε находится по формуле:

Подставляя данные в уравнения, получаем:

Частотная характеристика фильтра может быть определена математически его передаточной функции с стандартом передачи напряжения Функция H (jω) и записывается в виде:

Примечание: (jω) также можно записать как (s) для обозначения S-области. и результирующая передаточная функция для фильтра нижних частот второго порядка задается как:

Нормализованные полиномы фильтра Баттерворта низких частот

Чтобы помочь в разработке своих фильтров нижних частот, Баттерворт создал стандартные таблицы нормализованных полиномов нижних частот второго порядка с учетом значений коэффициента, которые соответствуют частоте отсечки угла 1 радиан / с.

N Нормализованные полиномы знаменателя в факторизованной форме
1 (1 + S)
2 (1 + 1,414 с + с 2)
3 (1 + с) (1 + с + с 2)
4 (1 + 0,765 с + с 2) (1 + 1,848 с + с 2)
5 (1 + с) (1 + 0,618 с + с 2) (1 + 1,618 с + с 2)
6 (1 + 0,518 с + с 2) (1 + 1,414 с + с 2) (1 + 1,932 с + с 2)
7 (1 + с) (1 + 0,445 с + с 2) (1 + 1,247 с + с 2) (1 + 1,802 с + с 2)
8 (1 + 0,390 с + с 2) (1 + 1,111 с + с 2) (1 + 1,663 с + с 2) (1 + 1,962 с + с 2)
9 (1 + с) (1 + 0,347 с + с 2) (1 + с + с 2) (1 + 1,532 с + с 2) (1 + 1,879 с + с 2)
10 (1 + 0,313 с + с 2) (1 + 0,908 с + с 2) (1 + 1,414 с + с 2) (1 + 1,782 с + с 2) (1 + 1,975 с + с 2)

Расчет и схема фильтра Баттерворта низких частот

Найти порядок активного фильтра Баттерворта нижних частот, чьи характеристики приведены в качестве: A макс = 0,5 дБ на частоте полосы пропускания (ωp) 200 радиан / сек (31.8 гЦ), и A min = -20 дБ на частоте полосы остановки (ωs) 800 радиан / сек. Также разработайте подходящую схему фильтра Баттерворта, соответствующую этим требованиям.

Во-первых, максимальное усиление полосы пропускания A max = 0,5 дБ, которое равно усилению 1,0593 , помните, что: 0,5 дБ = 20 * log (A) на частоте (ωp) 200 рад / с, поэтому значение эпсилона ε находится по:

Во-вторых, минимальное усиление полосы остановки A min = -20 дБ, которое равно усилению 10 (-20 дБ = 20 * log (A)) на частоте полосы остановки (ωs) 800 рад / с или 127,3 Гц.

Подстановка значений в общее уравнение для частотной характеристики фильтров Баттерворта дает нам следующее:

Так как n всегда должно быть целым числом, то следующим самым высоким значением 2,42 будет n = 3 , поэтому «требуется фильтр третьего порядка», и для создания фильтра Баттерворта третьего порядка, ступени фильтра второго порядка требуется каскадное соединение со ступенью фильтра первого порядка.

Из приведенной выше таблицы нормализованных полиномов Баттерворта низких частот коэффициент для фильтра третьего порядка дается как (1 + s) (1 + s + s 2), и это дает нам усиление 3-A = 1 или A = 2 . В А = 1 + (Rf / R1) , выбирая значение как для резистора обратной связи Rf и резистора R1 дает нам значения 1 кОм и 1 кОм, соответственно, как: (1 кОм / 1 кОм) + 1 = 2 .

Мы знаем, что угловая частота отсечки, точка -3 дБ (ω o) может быть найдена с помощью формулы 1 / CR , но нам нужно найти ω o по частоте полосы пропускания ω p ,

Таким образом, частота отсечки угла задается как 284 рад / с или 45,2 Гц (284 / 2π), и, используя знакомую формулу 1 / RC, мы можем найти значения резисторов и конденсаторов для нашей схемы третьего порядка.

Обратите внимание, что ближайшее предпочтительное значение до 0,352 мкФ будет 0,36 мкФ или 360 нФ.

И, наконец, наша схема низкочастотного фильтра Баттерворта третьего порядка с угловой частотой среза 284 рад / с или 45,2 Гц, максимальным усилением полосы пропускания 0,5 дБ и минимальным усилением полосы остановки 20 дБ строится следующим образом.

Таким образом, для нашего фильтра низких частот Баттерворта 3-го порядка с угловой частотой 45,2 Гц, C = 360 нФ и R = 10 кОм