Меню
Бесплатно
Главная  /  Mercedes  /  Схема подключения платы балансировки bms pcb. BMS – обзор контроллеров защиты аккумуляторов

Схема подключения платы балансировки bms pcb. BMS – обзор контроллеров защиты аккумуляторов

Просмотров: 53069

В последние годы популярность обрели так называемые "разумные" аккумуляторы, или иными словами Smart batteries. Аккумуляторы этой группы оснащаются микропроцессором, способным не только обеспечивать обмен данными с зарядным устройством, но и регулировать работу аккумуляторных батарей, информировать пользователя о степени их работоспособности. Аккумуляторы, комплектуемые специализированной системой интеллектуального регулирования, находят широкое применение в самом разном техническом электрооборудовании, включительно и электротранспортном. Примечательно, что группу интеллектуальных батарей образовывают преимущественно литийсодержащие аккумуляторы, хоть и встречаются среди них герметизированные или вентилируемые свинцово-кислотные, никель-кадмиевые.

Разумные батареи, как минимум, на 25% дороже обычных аккумуляторов. Однако интеллектуальные аккумуляторы отличаются не только ценой, как большинство предполагает, но и особенностями прилагаемого к ним регулировочного устройства. Последнее гарантирует идентификацию типа аккумуляторных батарей с зарядным устройством, отслеживает температуру, напряжение, ток, степень заряда аккумуляторов. Значительная часть литий-ионных батарейных модулей имеет встроенную систему мониторинга и управления (BMS ), которая отвечает за состояние аккумуляторов и управляет ими таким образом, чтобы максимально сохранить работоспособность аккумуляторных батарей в различных условиях.

Рассмотрим же более подробно, что такое аккумуляторная батарея с BMS. Разумные батареи - это аккумуляторы, оборудованные специальной микросхемой, в которой запрограммированы постоянные и временные данные. Постоянные данные программируются ещё на заводе-изготовителе и не подлежат изменению: данные, касаемые производственной серии BMS, её маркировки, совместимости с типом аккумуляторных батарей, вольтажа, максимальных и минимальных пределов напряжения, температурных границ. Временные же данные – это данные, подлежащие периодическому обновлению. К ним относятся преимущественно эксплуатационные требования и пользовательские данные. Как правило, предусматривается возможность подключения системы управления и балансировки к компьютеру или контроллеру с целью мониторинга состояния батарей и контроля их параметров. Некоторые модели BMS могут настраиваться под разные типы батарей (уровни их напряжения, значения тока, емкость).

Система управления батареи (BMS) – электронная система, которая управляет заряд/разрядным процессом аккумуляторной батареи, отвечает за безопасность её работы, проводит мониторинг состояния батареи, оценку вторичных данных работоспособности.

BMS (Battery Management System) – это электронная плата, которая ставится на аккумуляторную батарею с целью контроля процесса её заряда/разряда, мониторинга состояния аккумулятора и его элементов, контроля температуры, количества циклов заряда/разряда, защиты составных аккумуляторной батареи. Система управления и балансировки обеспечивает индивидуальный контроль напряжения и сопротивления каждого элемента аккумулятора, распределяет токи между составными аккумуляторной батареи во время зарядного процесса, контролирует ток разряда, определяет потерю емкости от дисбаланса, гарантирует безопасное подключение/отключение нагрузки.

На основе получаемых данных BMS выполняет балансировку заряда ячеек, защищает аккумулятор от короткого замыкания, перегрузки по току, перезаряда, переразряда (высокого и чрезмерно низкого напряжения каждой ячейки), перегрева и переохлаждения. Функциональность BMS позволяет не только улучшить режим эксплуатации аккумуляторных батарей, но и максимально увеличить срок их службы. При определении критического состояния батареи Battery Management System соответственно реагирует, выдавая запрет на использование аккумуляторной батареи в электросистеме - отключает её. В некоторых моделях BMS предусмотрена возможность ведения реестра (записи данных) о работе аккумуляторной батареи и их последующей передачи на компьютер.

Литий-железо-фосфатные аккумуляторы (известные как LiFePO4), что существенно превосходят ряд иных аккумуляторный батареи литий-ионной технологии с точки зрения безопасности, стабильности и производительности, также комплектуются схемами управления BMS. Дело в том, что литий-железо-фосфатные батареи чувствительны к перезаряду, а также разряду ниже определенного напряжения. С целью уменьшения риска повреждения отдельных аккумуляторных ячеек и выхода батареи в целом из строя все LiFePO4 аккумуляторы оснащаются специальной электронной схемой балансировки – системой управления батареями (BMS).

Напряжение на каждой из ячеек, объединенных в литий-железо-фосфатную батарею, должно находиться в определенных пределах и быть равным между собой. Ситуация же такова, что идеально равная емкость всех ячеек, входящих в состав единого аккумулятора, - довольно редкое явление. Даже малое различие на пару долей ампер-часов может спровоцировать в дальнейшем различие уровня напряжения при зарядно/разрядном процессе. Разница в уровне заряда/разряда ячеек единой LiFePO4 батареи довольно опасна, так как может погубить аккумулятор.

При параллельном соединении ячеек напряжение на каждой из них будет приблизительно равным: более заряженные элементы смогут вытягивать менее заряженные. При последовательном же соединении равномерного распредения заряда между ячейками не происходит, в результате чего одни элементы остаются недозаряженными, а другие перезаряжаются. И даже, если общее напряжении по завершении зарядного процесса будет близко к идеальному, вследствиедаже небольшогоперезаряда некоторых ячеек в батарее будут происходить необратимые разрушительные процессы. Аккумуляторная батарея в процессе эксплуатации не будет отдавать требуемой емкости, и по причине неравномерного распредения заряда быстро придет в негодность. Ячейки с наименьшим уровнем заряда станут своеобразным "cлабым местом" аккумулятора: они будут быстро поддаваться разряду, в то время, когда аккумуляторные элементы большей емкости будут проходить только частичный разрядный цикл.

Избежать негативных разрушительных процессов в аккумуляторной батарее позволяет метод балансировки. Система управления и балансировки ячеек BMS следит за тем, чтобы все ячейки в конце зарядки получали равное напряжении. При подходе зарядного процесса к концу BMS делает балансировку шунтированием зарядившихся ячеек или же переносит энергию элементов с большим напряжением к элементам с меньшим напряжением. В отличии от активной, при пассивной балансировке практически полностью восполнившие заряд ячейки получают меньший ток или исключаются из зарядного процесса до момента, пока все элементы аккумулятора не будут иметь равный уровень напряжения. Система управления батареей (BMS), производя балансировку, а также обеспечивая контроль температуры и выполнение ряда иных функций, максимально продлевает срок службы аккумулятора.

Обычно магазины продают уже готовые сборные аккумуляторные батареи с BMS, однако некоторые магазины и фирмы все же предоставляют возможность приобретения аккумуляторных составных по отдельности. К их числу относится и фирма «Электра». Электра – первая фирма в Украине, решившаяся на поставку и создание рынка аккумуляторных элементов для самостоятельной сборки и конструирования литий-железо-фосфатных аккумуляторных батарей (LiFePO4) в нашей стране. Главное преимущество самостоятельной сборки батарей из отдельных ячеек состоит в возможности получения сборного аккумуляторного комплекта максимально приближенного к запросам пользователя с точки зрения рабочих параметров и емкости. При покупке комплектующих для сборки LiFePO4 батареи важно обращать внимание не только на соответствие аккумуляторных ячеек между собой, но и смотреть на параметры BMS : напряжение, ток разряда, количество ячеек, на которое она рассчитана. Эксплуатация литий-железо-фосфатной аккумуляторной батареи также предусматривает использование исключительно зарядного устройства, отвечающего ей по типу. Его напряжение должно быть равным общему напряжению аккумуляторной батареи.

24v 36v 48v 60v

Основные цели применения BMS(BatteryManagementSystem) в качестве регулятора работы аккумуляторной батареи:

Защита аккумуляторных клеток и целой батареи от повреждений;

Увеличение срока службы батареи;

Поддержание аккумулятора в состоянии, при котором станет максимально возможным выполнение всех возложенных на него задач.

ФункцииBMS (Battery Management System)

1. Контроль за состоянием элементов аккумуляторной батареи с точки зрения:

- напряжения: общее напряжение, напряжение отдельных ячеек, минимальное и максимальное напряжение ячейки;

- температуры: средняя температура, температура электролита, температура на выходе, температура отдельных аккумуляторных "клеток", платы BMS (электронная плата, как правило, оснащается как внутренними температурными датчиками, проводящими мониторинг температуры непосредственно регулировочного устройства, так и внешними, которые используются для контроля температуры конкретных элементов батареи);

- заряда и глубины разряда;

- токов заряда /разряда;

- исправности

Система управления и балансировки ячеек может хранить в памяти такие показатели, как количество циклов заряда/разряда, максимальное и минимальное напряжение ячеек, максимальное и минимальное значение тока заряда и разряда. Именно эти данные и позволяют определять состояние исправности аккумуляторной батареи.

Неправильный заряд – одна из наиболее распространенных причин выхода аккумуляторной батареи из строя, поэтому контроль заряда является одной из основных функций микроконтроллера BMS.

2. Интеллектуально-вычислительная. На основе вышеперечисленный пунктов BMS проводит оценку:

Максимального допустимого тока заряда;

Максимального допустимого тока разряда;

Количества энергии, поставляемой вследствие зарядки, или же теряемой при разряде;

Внутреннего сопротивления ячейки;

Суммарной наработки аккумуляторной батареи в процессе эксплуатации (общего количества циклов работы).

3. Связная. BMS может подавать вышеуказанные данные на внешние управляющие устройства путем проводной или же беспроводной коммуникации.

4. Защитная. BMS защищает батарею, предотвращая её выход за пределы безопасной работы. BMS гарантирует безопасность подключения/отключения нагрузки, гибкое управление нагрузкой, защищает аккумуляторную батарею от:

Перегрузки по току;

Перенапряжения (во время зарядки);

Падения напряжения ниже допустимого уровня (во время разряда);

Перегрева;

Переохлаждения;

Утечки тока.

BMS может предотвратить опасный для аккумуляторной батареи процесс путем непосредственного влияния на неё или же подачи соответствующего сигнала о невозможности последующего использования аккумулятора к управляющему устройству (контроллеру). Система интеллектуального мониторинга (BMS) отключает аккумуляторную батарею от нагрузки или зарядного устройства при выходе хотя бы одного из рабочих параметров за границы допустимого диапазона.

5. Балансировка. Балансировка – это метод равномерного распределения заряда между всеми ячейками аккумуляторной батареи, благодаря чему максимально продлевается срок службы аккумулятора.

BMS предотвращает чрезмерный перезаряд, недозаряд и неравномерный разрядный процесс в отдельных аккумуляторных ячейках:

Осуществляя "перетасовку" энергии от наиболее заряженных клеток к менее заряженным (активная балансировка);

Снижая до достаточного низкого уровня поступление тока к практически полностью заряженной ячейке, одновременно с тем, когда менее заряженные аккумуляторные клетки продолжают получать нормальный зарядный ток (принцип шунтирования),

Обеспечивая процесс модульной зарядки;

Регулируя выходные токи ячеек аккумулятора, подключенного к электроустройству.

С целью защиты платы BMS от негативного воздействия влаги и пыли её покрывают специальным эпоксидным герметиком.

Не всегда аккумуляторы имеет только одну систему управления и балансировки. Иногда вместо одной платы BMS, подсоединяемой при помощи выходящих проводов к аккумуляторной батарее и контроллеру, используется сразу несколько связанным между собой регулировочных электронных плат, каждая из которых управляет определенным количеством ячеек и подает выходящие данные к единому контроллеру.

С практической точки зрения BMS могут выполнять значительно больше функций, нежели просто управление работой батареи. Иног да эта электронная система может принимать участие в контроле параметров режима работы электрического транспортного средства, и осуществлять соответствующие действия по управлению его электрической мощностью. Если аккумуляторная батарея участвует в работе системы рекуперации энергии при торможении электрического транспортного средства, то BMS также может регулировать процесс подзарядки батареи при замедлении и спусках.

Плата эта давно лежала в закромах, пока не подвернулся шанс использовать её по прямому назначению. Если Вы любите схемы и инструмент - будет интересно.

Если кто помнит, есть у меня переделанный шуруповёрт
Больше 2 лет он активно и исправно работал, разряжал и заряжал его раз 40.
До тех пор, пока сам его жестоко не перегрузил, делая вентиляционное отверстие в ОСБ коронкой 102 мм, еле удерживая инструмент обоими руками:)


Сетевой шуруповёрт также не справился с такой работой, а мощной дрели под рукой не оказалось. Результат - один из аккумуляторов не выдержал издевательств и ушёл в обрыв. Совсем:(
После частичной разборки аккумулятора выяснилось, что отгорел ленточный алюминиевый контакт к рулону. Ремонтировать аккумуляторы я пока не умею:(




Инструмент был срочно необходим, поэтому первая мысль - купить такой-же 26650 LiMn2O4 аккумулятор и быстренько восстановить батарейный блок. Но в магазинах такой-же аккумулятор не был обнаружен. Заказывать из Китая и ждать - слишком долго…
Кроме того, решил добавить в блок плату защиты BMS, чтобы подобное не повторилось. Но вот беда - свободное место в батарейном блоке совсем отсутствует:(
Короче, купил относительно недорого высокотоковые SONY US18650VTC4 (2100мАч 30А пиковый 60А). Обошлись в 750р за 3 штуки - это незначительно дороже, чем на заказ из Китая, зато здесь и сейчас! Брал
Ёмкость 2100мАч конечно существенно меньше бывших 3500мАч, но я это как нибудь переживу, всё равно устаёшь быстрее, чем он разряжается. Во время очередного перекура перекуса можно его подзарядить, тем более теперь заряжать буду новой зарядкой большим током:)
Работавшие ранее оставшиеся два аккумулятора 26650 3500мАч проверил на остаточную ёмкость - получил 3140мАч. Падение ёмкости на 10% вполне в допуске и аккумуляторы ещё можно где-нибудь использовать.








Из-за невысокой стоимости и встроенного балансира плату защиты можно встраивать прямо в батарейный блок электроинструмента. Функций зарядки плата не имеет.
Маркировка платы HX-3S-FL25A-A
Ранее уже были краткие обзоры этой платы, например тут

Размер платы совпадает с указанным 56х45мм, однако, толщина 4мм значительно больше заявленных 1,2мм, имейте это в виду.
Шунт собран из двух SMD резисторов по 5мОм в параллель (суммарно 2,5мОм).
Проволочные шунты всё-же надёжнее держат перегрузку, тут очевидно немного сэкономили, зато резисторы плоские и не торчат.
Полевики стоят в параллель по 4 штуки


Балансировка собрана на базе , номинальное напряжение балансировки 4,20В
Ток балансировки фиксированный 42мА (4,20В/100Ом=42мА), для не шибко ёмких аккумуляторов этого вполне достаточно.
Балансировка работает постоянно и независимо от схемы защиты. Пока напряжение на любом из аккумуляторов превышает 4,20В, к нему подключается нагрузочное сопротивление 100 Ом до тех пор, пока он не разрядится до 4,20В.

При желании, данную плату можно легко переделать в 2S просто замкнув перемычкой B2 и B+, при этом силовые ключи могут греться сильнее за счёт повышения сопротивления каналов полевиков.
Защиту обеспечивают контроллеры

Не нарушая своих принципов, срисовал исходную принципиальную схему.


Схема хоть и выглядит сложновато, работает просто и понятно. Ошибки естественно никуда не делись - китайцы держат марку:)
Нумерация транзисторов показана условно.
На p-n-n транзисторах Q1-Q6 собран преобразователь уровней и сумматор сигналов с HY2210
На n-p-n транзисторах Q7-Q9 собрана нехитрая транзисторная логика управления силовыми ключами
Q7 отпирается при переразряде любого аккумулятора до напряжения ниже 2,40В, восстановление происходит при напряжении свыше 3,0В (после снятия нагрузки либо подключения к зарядке).
Q8 обеспечивает защёлкивание защиты после её срабатывания до момента полного снимания нагрузки. Одновременно, на нём организована быстродействующая защита при коротком замыкании нагрузки, когда ток прыгает свыше 100А.
Q9 отпирается при перезаряде любого аккумулятора до напряжения свыше 4,28В, восстановление происходит под нагрузкой при напряжении ниже 4,08В. При этом силовые ключи не препятствуют протеканию разрядного тока.
Точные пороги всех контроллеров я не проверял, т.к. это трудоёмко, но реально они не сильно отличаются от заявленных в спецификации.

S1 и S2 - просто контрольные точки, к термозащите отношения не имеют. Более того, замыкать их между собой нельзя. Как нормально подключить термозащиту - ниже расскажу и покажу.
На S1 появляется сигнал при переразряде любого элемента.
На S2 появляется сигнал при перезаряде любого элемента, а также после срабатывания токовой защиты.
Ток потребления платой очень мал (несколько микроампер).

Новые аккумуляторы

Аккумуляторы подписаны и проверены, ёмкость соответствует номинальной



Несмотря на наличие аппарата контактной сварки, аккумуляторы паял, т.к. в данном случае это лучшее решение.
Перед пайкой, необходимо аккумуляторы хорошо залудить.

Аккумуляторы спаяны и установлены на место



Плата припаяна (на фото плата уже переделана)
Соблюдать осторожность и не замыкать концы с аккумуляторов





Силовые провода - в силиконовой изоляции 1,5кв.мм
Контрольные провода - МГТФ-0,2



Типовая схема подключения платы не является оптимальной, т.к. к плате идут аж 4 силовых провода. Я подключил по более простой схеме, когда к плате идёт всего 2 силовых провода. Такое подключение допускается при малой длине соединительных проводов до аккумуляторов

Под нагрузкой при резком нажатии курка тут-же срабатывает защита платы:(
Сначала, я логично предположил, что она отрубается из-за токовой перегрузки, но замыкание шунта платы ничего не изменило. Стало понятно, что не токовая перегрузка платы вызывает срабатывание защиты.
Далее, подключил осциллограф в режиме записи к аккумуляторам и проверил напряжение на них под нагрузкой. Напряжение успело провалиться ниже 7В и защита тут-же сработала:(
Вот и причина срабатывания защиты. Почему напряжение так сильно провалилось, ведь аккумуляторы высокотоковые? Давайте займёмся измерениями и расчётами:
- напряжение аккумуляторов 11,4В (HP890CN)
- внутреннее сопротивление аккумуляторов из даташита на постоянном токе DC-IR 66мОм (3х22мОм)
- измеренное сопротивление двигателя 63мОм
- сопротивление соединительных проводов и переключателя шуруповёрта - 23мОм
- сопротивление платы защиты - шунт + MOSFET + провода подключения - 10мОм
Общее сопротивление цепи 66+63+23+10=162мОм
Ток в цепи 11,4/0,162=70А
Немало, однако…

Но проблема не в токе, а в падении напряжения на аккумуляторах.
При токе 70А напряжение каждого аккумулятора снижается на 70*0,022=1,54В и становится 3,8-1,54=2,26В. Вот она, реальная причина срабатывания защиты!
Корректировать или убирать защиту нежелательно - снижается безопасность использования, поэтому её надо просто замедлить на время пуска двигателя. Добавляем конденсатор 0,47мкФ в нужное место и задержка готова:)
Если кому-то паять мелочь на плату затруднительно, можно запаять конденсатор навесным монтажом между S1 и B-
Мне проще было поставить SMD конденсатор:)
Теперь есть достаточно времени, чтобы двигатель успел раскрутиться под нагрузкой. При жёсткой блокировке двигателя на полном газу, защита срабатывает через 0,3 сек, а не мгновенно, как раньше.
Переделанная плата


На резистор 470кОм не обращайте внимания - родной резиcтор 510кОм пострадал в результате экспериментов и был заменён что под руку попало:)
Плата содержит высокоомные цепи, поэтому после пайки необходимо тщательно отмывать плату.

Схема после переделки

Описание всех доработок
1. Выпаян ненужный конденсатор 0,1мкФ со 2 вывода HY2210 к шунту. Зачем его вообще поставили - непонятно, в даташите на HY2210 он отсутствует. На работу не влияет, но выпаял его от греха подальше.
2. Добавлен резистор база-эмиттер для нормального восстановления после срабатывания защиты.
Без него, автовосстановление защиты после снятия нагрузки работает крайне нестабильно, т.к. малейшие наводки на P- мешают сбрасывать защиту. Подходящий номинал резистора 1-3МОм. Паял этот резистор аккуратно непосредственно к выводам транзистора. Осторожно, не перегревайте его!
3. Добавлен конденсатор 0,47мкф для замедления срабатывания защиты от переразряда с 25мс (типовое для HY2210) до 300мс. Пробовал подключать конденсатор 0,1мкФ - защита срабатывает слишком быстро для здоровенного двигателя RS-775. Если двигатель совсем зверский, может понадобиться установка более ёмкого конденсатора, например 1мкФ

Теперь резкое нажатие на курок под нагрузкой не приводит к срабатыванию защиты:)

Подключение защитного термовыключателя.
К данной плате можно подключить как NO так и NC термовыключатель.
Схемы привожу ниже.


Я использовал NO термовыключатель KSD 9700 5A 70ºC



Приклеил его к аккумуляторам

Заодно решил отказаться от зарядки с БП через токоограничивающие резисторы и заряжать аккумуляторы переделанной зарядкой 3S 12,6V 3A

Итоговая схема получилась такова

Зарядка Colaier 12,6В 3А

на неё уже делал ув. kirich , но мне как всегда есть что добавить



В исходном виде зарядка не держит заявленный ток 3А и перегревается. К тому-же, она излучает заметные помехи на близко расположенный радиоприёмник.
Зарядка была разобрана ещё до тестов:)









От простых БП зарядка отличается установленными дополнительно элементами схемы токоограничения

С доработками буду краток:)
- Поставил отсутствующий входной фильтр. Теперь радиоприёмник не реагирует на работающую зарядку.
- Переставил в нужные места термистор NTC1 (5D-9) и предохранитель LF1 (T2A)
- На плате есть место для установки разрядных резисторов R1 + R2. Они нужны для разряда CX1 после отключения зарядки из сети. Поставил разрядный резистор ОМЛТ-0,5 620 кОм параллельно CX1:)



Поставил выходной дроссель L1 вместо перемычек. На работу никак не повлияло, ибо выходные пульсации для зарядки не имеют большого значения.



Снизил выходное напряжение с 12,8В до 12,65В подключением параллельно резистору R29 8.2кОм резистора 390кОм
- Снизил выходной ток с 3,2А до 2А заменой резистора R26 1,6кОм на резистор 1кОм


Ток снизил потому, что во-первых, данная зарядка не может без перегрева выдать ток 3А, а во-вторых потому, что аккумуляторы US18650VTC4 имеют максимальный зарядный ток 2А.
Разводка печатной платы выполнена некорректно, из-за этого нет хорошей стабильности выходного напряжения и тока. Менять не стал ибо не сильно критично.

Выводы:
- Аккумуляторы SONY US18650VTC4 имеют только один недостаток - небольшую ёмкость
- Плата BMS 3S 25A способна работать нормально после небольшой доработки
- Зарядка 3S 12,6В 3A в исходном виде работает неудовлетворительно и требует значительной доработки, рекомендовать её не могу, извините

После переделки, шуруповёрт нормально работает уже 4 месяца. Снижение мощности не ощущается, заряжается быстро, чуть более часа.

В наш современный век всеобщей популяризации литиевых батарей любой, даже простой пользователь бытовых устройств, должен хотя-бы примерно представлять их функционирование и факторы риска при их эксплуатации. Среди произошедших несчастных случаев с аккумуляторами (например, электронных сигарет) лишь небольшой процент обязан производственному браку, чаще всего неисправности возникают в результате неправильной эксплуатации.

В нашей статье мы рассмотрим новейшие технологии, которые призваны защитить литиевые аккумуляторы, а также расскажем, почему они так важны.

Из теории литиевых аккумуляторов можно узнать, что им противопоказан перезаряд, переразряд или разряд слишком большими токами, а также короткие замыкания. При переразряде, в аккумуляторе образуются металлические связи между катодом и анодом, которые приводят к короткому замыканию при зарядке аккумулятора, что может привести к порче не только элементов питания, но и зарядного устройства. Перезаряд же (набор аккумулятором напряжения больше разрешенного) почти сразу ведёт к возгоранию, а зачастую даже к взрыву.

Для горения литиевых аккумуляторов не нужен кислород – оно происходит анаэробно, поэтому стандартные методы тушения не подходят; также, при реакции лития с водой выделяется еще и горючий газ водород, который только ухудшает ситуацию. Разряд высокими токами приводит к вздутию аккумулятора, а если нарушается целостность оболочки – происходит реакция лития с водяными парами в воздухе, что само по себе способно спровоцировать возгорание.

Всё это отнюдь не перечёркивает явные преимущества аккумуляторов, среди них:

  • большая плотность энергии на единицу массы
  • низкий процент саморазряда
  • практически полное отсутствие эффекта памяти (когда заряд неполностью разряженного элемента приводит к снижению ёмкости)
  • большой температурный диапазон работы

Незначительное снижение напряжения в процессе разряда накладывает некоторые обязанности на пользователя. Нельзя допустить превышения максимального напряжения (4.25 В), снижение напряжения ниже минимального (2.75 В), а также превышения рабочего тока, который отличается для каждой модели. И в этом хитром деле нам помогут специальные устройства – BMS-контроллеры!

Что такое BMS?

В переводе с английского, BMS (Battery Management System) – система управления батареей. Понятие слишком широкое, поэтому оно описывает почти все устройства, так или иначе обеспечивающие корректную работу аккумуляторов в данном устройстве, начиная с простых плат защиты или балансировки, заканчивая сложными микроконтроллерными устройствами, подсчитывающими ток разряда и количество циклов заряда (например, как в батареях ноутбуков). Мы не будем рассматривать сложные устройства – как правило, они специфичны и не предназначаются для рядового радиолюбителя, а выпускаются только под заказ для крупных производителей устройств.

То, что продаётся повсеместно, условно можно разделить на четыре категории:

  • балансиры
  • защиты (по току, напряжению)
  • платы, обеспечивающие заряд (да, они тоже считаются устройствами BMS)
  • те или иные комбинации вышеперечисленных вариантов, вплоть до объединения всего в одно устройство

Чем функциональней и разветвлённей защита – тем больше ресурс работы вашего аккумулятора.

Принцип работы BMS-контроллеров

Давайте посмотрим, по какому принципу BMS системы выполняют своё предназначение.

Структурно на плате можно выделить:

  • микросхема защиты
  • аналоговая обвязка (для определения тока/балансировки аккумуляторов)
  • силовые транзисторы (для отключения нагрузки)

Рассмотри подробнее работу каждой из защит.

Защита по току (от короткого замыкания / превышения допустимого тока)

Существует множество вариантов узнать, какой ток течёт по линии. Самый распространённый – шунт (измерение падения напряжения на резисторе с низким сопротивлением и большой мощностью), но он требует большой точности измерений и весьма громоздкий. Метод с измерением на основе эффекта Холла лишён этих недостатков, но стоит дороже, поэтому самый распространённый метод определения КЗ на линии – измерение напряжения, которое проседает практически до нуля в режиме КЗ.

Современные контроллеры позволяют сделать это в очень короткий промежуток времени, за который ущерб не нанесётся ни подключенному устройству, ни самому аккумулятору. Но защита по току может функционировать и на шунте – ведь в случае BMS тут не нужно точное измерение, важен лишь переход падения напряжения через определённый порог. Как только событие наступает, контроллер сразу же отключает нагрузку при помощи транзисторов.

Защита по напряжению (от перезаряда или переразряда)

С этой защитой разобраться попроще, так как измерение напряжения легко можно сделать, используя аналогово-цифровой преобразователь. Но и тут есть некая специфика – стоит отметить, что если контроллер защищает большую сборку из последовательно соединённых аккумуляторов, то обычно он меряет напряжение каждой банки персонально, так как ввиду мельчайших различий в элементах они имеют мельчайшие же различия по ёмкости, что выливается в неравномерный разряд и возможность высадить «в ноль» отдельный элемент.

Некоторые системы не подключают нагрузку, не дождавшись дозаряда аккумулятора до определённого напряжения после срабатывания триггера по переразряду, то есть недостаточно подзарядить элемент пару минут, чтобы он поработал ещё хоть малое время – обычно необходимо зарядить до номинального напряжения (3.6 – 4.2В, в зависимости от типа аккумулятора).

Защита по температуре

Редко встречается в современных устройствах, но не зря большинство аккумуляторов для телефонов оборудовано третьим контактом – это и есть вывод терморезистора (резистора, имеющего чёткую зависимость сопротивления от окружающей температуры). Обычно перегрев не наступает сам собой и раньше успевают сработать другие виды защиты – например, перегрев может быть вызван коротким замыканием.

Алгоритм работы заряда батарей

Зарядка литиевых аккумуляторов происходит в 2 этапа: CC (constant current, постоянный ток) и CV (constantvoltage, постоянное напряжение). В течение первого этапа зарядное устройство постепенно поднимает напряжение таким образом, чтобы заряжаемый элемент брал заданный ток (обычное рекомендованное значение равно 1 ёмкости аккумулятора). Когда напряжение достигает 4В, зарядка переходит на второй этап и поддерживает напряжение 4.2В на батарее.

Когда элемент практически перестанет брать ток, он считается заряженным. На практике, алгоритм можно реализовать и при помощи обычного лабораторного блока питания, но зачем, если есть специализированные микросхемы, заранее «заточенные» под выполнение этой последовательности действий, например, самая известная из них – TP4056, способна заряжать током до 1А.

Что такое балансировка?

Напоследок мы оставили самую интересную функцию BMS – функцию балансировки элементов многобаночного аккумулятора.

Итак, что же такое балансировка? Сам процесс её подразумевает выравнивание напряжений на элементах батареи, соединённых последовательно для повышения общего напряжения сборки. Из-за небольших отличиях в ёмкости батарей они заряжаются за немного разное время, и когда одна банка может уже достигнуть апогея зарядки, остальные могут ещё недобрать заряд.

При разряде такой сборки большими токами наиболее заряженные элементы по закону Ома возьмут на себя больший ток (при равном сопротивлении ток будет зависеть от напряжения, которое находится в знаменателе формулы), что вызовет их ускоренный износ и может вывести элемент из строя. Для того, чтобы избежать этой проблемы, применяют аккумуляторные балансиры – специальные устройства, выравнивающие напряжения на банках до одного уровня.

Давно не было обзора переделки шуруповерта на литий:)
Обзор посвящен в основном плате BMS, но будут ссылки и еще на некоторые мелочи, задействованные в переводе моего старого шуруповерта на литиевые батареи формата 18650.
Коротко - эту плату брать можно, после небольшого допиливания она вполне нормально работает в шуруповерте.
ЗЫ: много текста, картинки без спойлеров.

P.S. Обзор почти юбилейный на сайте - 58000-й, если верить адресной строке браузера;)

Зачем все это

Трудится у меня уже несколько лет купленный в строймаге по дешевке безымянный двухскоростной шуруповерт на 14.4 вольта. Точнее, не прям совсем безымянный - на нем проставлена марка этого строймага, но и не какой-то именитый. На удивление живуч, до сих пор не сломался и выполняет все, что я от него требую - и сверление, и закручивание-раскручивание шурупов, и как намотчик трудится:)


Но вот его родные NiMH аккумуляторы так долго работать не захотели. Один из двух комплектных окончательно сдох год назад после 3 лет эксплуатации, второй в последнее время уже не жил, а существовал - полной зарядки хватало на 15-20 минут работы шуруповерта с перерывами.
Сначала я хотел обойтись малыми силами и просто заменить старые банки на такие же новые. Купил вот эти у вот этого продавца -
Они отлично работали (хотя и немного хуже родных) целых два или три месяца, после чего сдохли быстро и полностью - после полного заряда их не хватало даже на закрутить десяток шурупов. Не рекомендую брать у него аккумуляторы - хотя емкость изначально соответствовала обещанной, долго они не протянули.
И я понял, что придется все-таки заморочиться.

Ну и теперь о главном:)

Повыбирав на Али из предлагаемых плат BMS, остановился на обозреваемой, по ее размерам и параметрам:
  • Модель: 548604
  • Отключение по перезаряду при напряжении: 4.28+ 0.05 V (на ячейку)
  • Восстановление после отключение по перезаряду при напряжении: 4.095-4.195V (на ячейку)
  • Отключение по переразряду при напряжении: 2.55±0.08 (на ячейку)
  • Задержка отключения по перезаряду: 0.1s
  • Температурный диапазон: -30-80
  • Задержка отключения по КЗ: 100ms
  • Задержка отключения по превышению тока: 500 ms
  • Ток балансировки ячеек: 60mA
  • Рабочий ток: 30A
  • Максимальный ток (срабатывание защиты): 60A
  • Работа защиты по КЗ: самовосстановление после отключения нагрузки
  • Размеры: 45x56mm
  • Основные функции: защита от перезаряда, защита от переразряда, защита от КЗ, защита от перегрузки по току, балансировка.
Вроде все отлично подходит для задуманного, наивно думал я:) Нет, чтобы почитать обзоры других BMS, а главное - комментарии к ним… Но мы же предпочитаем свои грабли, и только наступив на них, узнаем, что авторство на эти грабли уже давным давно и множество раз описано в инете:)

Все компоненты платы размещены на одной стороне:

Вторая сторона пустая и покрыта белой маской:

Часть, отвечающая за балансировку при заряде:

Эта часть отвечает за защиту ячеек от перезаряда/переразряда и она же отвечает за общую защиту от КЗ:

Мосфеты:

Собрано аккуратно, откровенных разводов флюса нет, вид вполне приличный. В комплекте шел хвост с разъемом, был сразу воткнут в плату. Длина проводов в этом разъеме - около 20-25 см. К сожалению, сразу его не сфотографировал.

Что еще заказал именно для этой переделки:
Аккумуляторы -
Никелевые полоски для спайки аккумуляторов: (да, знаю, что можно спаять и проводами, но полосками будет занято меньше пространства и получится эстетичнее:)) Да и изначально я хотел даже собрать контактную сварку (не только для этой переделки, конечно), поэтому и заказал полоски, но лень победила и пришлось паять.

Выбрав свободный день (точнее, нагло послав все остальные дела подальше), я взялся за переделку. Для начала разобрал батарею со сдохшими китайскими аккумуляторами, выкинул аккумуляторы и тщательно замерил пространство внутри. После чего сел рисовать держатель батарей и платы в 3D-редакторе. Плату тоже пришлось нарисовать (без подробностей) чтобы примерить все в сборе. Получилось как-то так:


По задумке плата крепится сверху, одной стороной в пазы, вторая сторона зажимается накладкой, сама плата серединой лежит на выступающей плоскости, чтобы при ее прижатии она не прогибалась. Сам держатель сделан такого размера, чтобы плотно сидеть внутри корпуса батареи и не болтаться там.
Сначала подумывал сделать пружинные контакты для аккумуляторов, но отказался от этой мысли. Для больших токов это не лучший вариант, поэтому оставил в держателе вырезы для никелевых полосок, которыми аккумуляторы будут спаяны. Так же оставил вертикальные вырезы для проводов, которые должны выходить от межбаночных соединений за пределы крышки.
Поставил печататься на 3D-принтере из ABS и через несколько часов все было готово:)


Прикручивание всего навесного я решил не доверять шурупам и вплавил в корпус вот такие вставные гаечки М2.5:


Брал тут -
Отличная вещь для подобного применения! Вплавляется не спеша паяльником. Чтобы пластик не набился внутрь при вплавлении в глухие отверстия, я вкручивал в эту гайку болтик подходящей длины и грел его шляпку жалом паяльника с большой каплей олова для лучшей теплопередачи. Отверстия в пластике под эти гайки оставляются чуть меньше (на 0.1-0.2 мм) диаметра внешней гладкой (средней) части гайки. Держатся очень крепко, можно сколько угодно вкручивать-выкручивать болтики и не особо стесняться с усилием затяжки.

Для того чтобы иметь возможность побаночного контроля и, при необходимости, зарядки с внешней балансировкой, в задней стенке батареи будет торчать 5-контактный разъем, для которого я быстро накидал платку и изготовил ее на станке:




В держателе предусмотрена площадка для этой платки.

Как я уже писал, аккумуляторы я спаивал никелевыми полосками. Увы, этот метод не лишен недостатков и один из аккумуляторов возмутился таким обращением с ним настолько, что оставил на своих контактах только 0.2 вольта. Пришлось его выпаивать и паять другой, благо брал их с запасом. В остальном никаких трудностей не возникло. С помощью кислоты лудим контакты аккумулятора и нарезанные по нужной длине никелевые полоски, потом тщательно протираем ватой со спиртом (но можно и с водой) все залуженное и вокруг него, и паяем. Паяльник должен быть мощным и либо уметь очень резво реагировать на остывание жала, либо просто иметь массивное жало, которое не остынет мгновенно при контакте с массивной железкой.
Очень важно: во время пайки и при всех последующих операциях со спаянным блоком аккумуляторов нужно внимательнейшим образом следить за тем, чтобы не замкнуть какие-либо контакты аккумуляторов! Кроме того, как указал в комментариях ybxtuj , очень желательно паять их разряженными, и я абсолютно согласен с ним, так последствия будут легче если все-таки что-то замкнется. КЗ такой батареи, даже разряженной, может привести к большим неприятностям.
К трем промежуточным соединениям между аккумуляторами припаял провода - они пойдут на разъем платы BMS для контроля за банками и на внешний разъем. Забегая вперед, хочу сказать, что с этими проводами я проделал немного лишней работы - их можно не вести к разъему платы, а припаять к соответствующим контактам B1, B2 и B3. Эти контакты на самой плате соединены с контактами разъема.

Кстати, я везде использовал провода в силиконовой изоляции - совершенно не реагируют на нагрев и очень гибкие. Покупал на Ебее нескольких сечений, но точную ссылку уже не помню… Очень они мне нравятся, но есть и минус - силиконовая изоляция не слишком прочна механически и легко повреждается острыми предметами.

Примерил аккумуляторы и плату в держателе - все превосходно:



Примерил платку с разъемом, дремелем выпилил в корпусе батареи отверстие под разъем… и промахнулся по высоте, не от той плоскости взял размер. Получилась приличная такая щель:



Теперь остается спаять все в кучу.
На свою платку припаял идущий в комплекте хвост, обрезав его по нужной длине:


Туда же впаял провода от межбаночных соединений. Хотя, как я уже писал, можно было припаять их на соответствующие контакты платы BMS, но тут есть и неудобство - чтобы вытащить аккумуляторы нужно будет отпаивать от BMS не только плюс и минус, но и еще три провода, а сейчас можно просто выдернуть разъем.
Немного повозиться пришлось с контактами батареи: в родном исполнении пластиковая деталь (держащая контакты) внутри ножки батареи поджимается одним аккумулятором, стоящим прямо под ней, а сейчас пришлось думать чем эту деталь зафиксировать, да так чтобы не намертво. Вот эта деталь:


В конце концов взял кусок силикона (остался от заливки какой-то формы), отрезал от него примерно подходящий кусок и вставил в ножку, поджав ту деталь. Заодно этот же кусок силикона прижимает держатель с платой, ничего болтаться не будет.
На всякий случай проложил поверх контактов каптоновую изоленту, провода прихватил несколькими соплями каплями термоклея, чтобы они не попали между половинками корпуса при его сборке.

Зарядка и балансировка

Зарядку я оставил родную от шуруповерта, она как раз выдает на холостом ходу около 17 вольт. Правда, зарядка тупа и никакой стабилизации тока или напряжения в ней нет, есть только таймер, отключающий ее примерно через час после начала заряда. Ток выдает около 1.7А, что хоть и многовато, но допустимо для этих аккумуляторов. Но это пока я не доделаю ее до нормальной, со стабилизацией тока и напряжения. Потому что сейчас плата отказывается балансировать одну из ячеек, имевшую изначально заряд на 0.2 вольта больше. BMS отключает заряд когда напряжение на этой ячейке доходит до 4.3 вольта, соответственно на остальных оно остается в пределах 4.1 вольта.
Читал где-то утверждение, что эта BMS нормально балансирует только с зарядкой CV/CC, когда ток под конец заряда постепенно снижается. Возможно, это так и есть, так что впереди меня ждет модернизация зарядки:)
Разряжать до конца не пробовал, но уверен, что защита по разряду сработает. На Ютубе есть ролики с тестами этой платы, все работает как положено.

А теперь о граблях

Все банки заряжены до 3.6 вольт, все готово к запуску. Вставляю батарею в шуруповерт, нажимаю курок и… Уверен, что не один человек, знакомый с этими граблями, сейчас подумал «И хрен стартанул у тебя шуруповерт»:) Абсолютно верно, шуруповерт слегка дернулся и все. Отпускаю курок, нажимаю снова - то же самое. Нажимаю плавно - стартует и разгоняется, но стоит стартануть его чуть порезче - отказ.
«Вот же...», подумал я. Китаец, наверное, указал в спецификации китайские амперы. Ну да ладно, у меня есть отличная толстая нихромовая проволока, сейчас я напаяю ее кусок поверх резисторов-шунтов (стоят два по 0.004 Ома в параллель) и настанет мне если и не счастье, то хотя бы какое-то улучшение ситуации. Улучшение не настало. Даже когда я вообще исключил из работы шунт, просто припаяв минус батареи после него. То есть не то что улучшений не настало, а не настало вообще никаких изменений.
И вот тогда я полез в инет и обнаружил, что копирайт на эти грабли мне не светит - они давно уже исхожены другими. Но вот решения как-то не было видно, кроме кардинального - покупать плату, подходящую именно для шуруповертов.

И решил я попробовать все же доковыряться до корня проблемы.

Предположения что срабатывает защита от перегрузки при пусковых токах я отмел, так как даже без шунта ничего не менялось.
Но все же посмотрел осциллографом на самодельном шунте 0.077 ома между аккумуляторами и платой - да, ШИМ видно, резкие пики потребления с частотой примерно 4 кГц, через 10-15 мс после начала пиков плата отрубает нагрузку. Но эти пики показывали меньше 15 ампер (исходя из сопротивления шунта), так что точно дело не в токовой перегрузке (как оказалось впоследствии, это не совсем верно). Да и керамическое сопротивление 1 Ом не вызывало отключения, а ведь ток тоже под 15 ампер.
Был еще вариант кратковременной просадки на банках при пуске, от чего срабатывает защита от переразряда и я полез смотреть что творится на банках. Ну да, там ужас творится - пиковая просадка до 2.3 вольта на всех банках, но она очень короткая - меньше миллисекунды, тогда как плата обещает ждать сотню миллисекунд перед тем как врубит защиту от переразряда. «Китайцы указали китайские миллисекунды», подумал я и полез смотреть схему контроля напряжения банок. Оказалось, что в ней стоят RC-фильтры, сглаживающие резкие изменения (R=100 Om, C=3.3 uF). После этих фильтров - уже на входе микросхем, контролирующих банки, просадка была поменьше - всего до 2.8 вольт. Кстати, вот даташит на микросхемы контроля банок на этой плате DW01B -
По даташиту время реакции на переразряд тоже немалое - от 40 до 100 мс, что не вписывается в картину. Но ладно, предположить больше нечего, поэтому поменяю-ка я сопротивления в RC-фильтрах со 100 Ом на 1 кОм. Это кардинально улучшило картину на входе микросхем, просадок меньше 3.2 вольт там больше не было. Но ничуть не изменило поведение шуруповерта - чуть более резкий старт - и затык.
«Пойдем простым логическим ходом»©. Отрубать нагрузку могут только эти микросхемы DW01B, которые контролируют все параметры разряда. И я просмотрел осциллографом управляющие выходы всех четырех микросхем. Все четыре микросхемы никаких попыток отключить нагрузку при старте шуруповерта не делают. А с затворов мосфетов управляющее напряжение пропадает. Или мистика или китайцы что-то навертели в простой схеме, которая должна быть между микросхемами и мосфетами.
И начал я реверс-инжиниринг этой части платы. С матюками и бегая от микроскопа к компьютеру.

Вот что нарисовалось в итоге:


В зеленом прямоугольнике - это сами аккумуляторы. В синем - ключи с выходов микросхем защиты, тоже ничего интересного, в нормальной ситуации их выходы на R2,R10 просто «висят в воздухе». Самая интересная часть - в красном квадрате, вот тут-то, как оказалось, собака и порылась. Мосфеты я нарисовал по одному для упрощения, левый отвечает за разряд в нагрузку, правый за заряд.
Насколько я понял, причина отключения в резисторе R6. Через него организована «железная» защита от токовой перегрузки за счет падения напряжения на самом мосфете. Причем эта защита работает как триггер - стоит напряжению на базе VT1 начать повышаться, как он начинает снижать напряжение на затворе VT4, от чего тот начинает снижать проводимость, на нем повышается падение напряжения, что приводит к еще большему увеличению напряжения на базе VT1 и пошел лавинообразный процесс, приводящий к полному открытию VT1 и, соответственно, закрытию VT4. Почему это происходит при пуске шуруповерта, когда пики тока не достигают и 15А, тогда как постоянная нагрузка в 15А работает - я не знаю. Возможно тут играет роль емкость элементов схемы или индуктивность нагрузки.
Для проверки я сначала сделал симуляцию этой части схемы:


И вот что получил по результатам ее работы:


По оси X - время в миллисекундах, по Y - напряжение в вольтах.
На нижнем графике - включение нагрузки (на цифры по Y можно не смотреть, они условны, просто вверх - нагрузка включена, вниз - выключена). Нагрузкой является сопротивление 1 Ом.
На верхнем графике красным - ток нагрузки, синим - напряжение на затворе мосфета. Как видно, напряжение на затворе (синим) снижается с каждым импульсом тока нагрузки и в конце концов падает до нуля, а значит нагрузка отключается. И не восстанавливается даже когда нагрузка перестает пытаться что-то потреблять (после 2 миллисекунд). И хотя здесь применены другие мосфеты с другими параметрами, картина один в один как в плате BMS - попытка старта и отключение через считанные миллисекунды.
Ну что ж, примем это за рабочую гипотезу и вооружившись новыми знаниями попробуем разгрызть этот кусок науки китайца:)
Тут есть два варианта:
1. Поставить небольшой конденсатор параллельно резистору R1, это:


Конденсатор 0.1 мкф, по симуляции можно и меньше, до 1 нф.
Результат симуляции в таком варианте:


2. Убрать вообще резистор R6:


Результат симуляции этого варианта:

Я попробовал оба варианта - оба работают. Во втором варианте шуруповерт не отключается ни при каких обстоятельствах - старт, блокировка вращения - крутит (или изо всех сил пытается). Но как-то не совсем спокойно жить с отключенной защитой, хотя еще и остается защита от КЗ на микросхемах.
При первом варианте шуруповерт уверенно стартует при любом нажатии. Добиться отключения я смог только когда стартовал его на второй скорости (повышенная для сверления) с заблокированным патроном. Но и то он довольно сильно дергает перед отключением. На первой скорости я не смог добиться его отключения. Этот вариант я и оставил себе, меня он полностью устраивает.

На плате даже есть пустые места для компонентов и одно из них как будто специально предназначено для этого конденсатора. Рассчитано оно под размер SMD 0603, сюда я и впаял 0.1 мкф (обвел его красным):

ИТОГ

Плата вполне оправдала ожидания, хотя и преподнесла сюрприз:)
Плюсы и минусы расписывать не вижу смысла, все это в ее параметрах, укажу только одно достоинство: совершенно незначительная доработка превращает эту плату в полноценно работающую с шуруповертами:)

ЗЫ: блин, я шуруповерт переделывал меньше времени, чем писал этот обзор:)
ЗЗЫ: возможно меня поправят в чем-то более опытные в силовой и аналоговой схемотехнике товарищи, сам-то я цифровик и аналог воспринимаю через пень колоду:)

Планирую купить +266 Добавить в избранное Обзор понравился +359 +726

Аккумуляторы LiFePO4 – компактные и функциональные, отличаются легкостью веса, долговечностью и оптимальны для любых целей использования. Для защиты от переразряда и перезаряда, предупреждения длительного превышения разрядного тока комплектуются BMS платой, при емкости свыше сорок ампер дополняются балансирами. По своим преимуществам устройства значительно опережают «собратьев», не обладают эффектом памяти, отличается термической и химической стабильностью, нетоксичны и не подвержены самовоспламенению. Минимальное количество циклов даже при усиленной эксплуатации составляет не менее 2000 (до стопроцентного разряда), а при щадящем режиме использования – около 8000 (если не разряжать свыше 80%).

Сборка LiFePO4 аккумулятора состоит в последовательно-параллельном соединении ячеек устройства. Для этого необходимы электроизоляционные материалы, коннекторы, кабель, зарядное устройство, паяльник или же контактная сварка, ячейки LiFePO4. Батареи располагаются вместе, выравниваются, для удобства склеиваются (по заранее выбранной схеме). После этого с каждой убирается технологический пятачок (с помощью отпайки или ножа), соединяются перемычки, балансир и силовой провод. Для защиты от замыкания стоит воспользоваться термоусадкой.

Схема подключения с симметричной BMS платы

Схема подключения BMS платы

LiFePO4: сборка по правилам

Важно помнить, что использовать ячейки лучше из одной партии, в противном случае, ориентируйтесь на их внутреннее сопротивление. Не новые изделия стоит протестировать на емкость.

Если конструкция создается последовательно, то напряжение по ячейкам суммируется, показатель емкости неизменен. При этом обязательно балансировать элементы, потому как каждый из них будет иметь различное время заряда.

Параллельное соединение не требует балансировки ячеек по параллелям, предполагает суммирование емкости, а параметр напряжения – неизменен.

Инструкция по сборке LiFePO4 аккумулятора довольно проста, но процесс требует соблюдения определенных мер безопасности. Все элементы необходимо оберегать от механических ударов, для работы использовать защитные очки. Нельзя замыкать клеммы с разной полярностью (как на самих аккумуляторах, так и на электродах), рекомендуется их залудить, либо произвести пайку до начала монтажа конструкции.

Соединение производится:

  1. Точечной сваркой.
  2. Пайкой.
  3. Болтовым соединением.

Первый вариант подходит для самостоятельной сборки, он эффективен и не требует мастерских навыков, второй необходимо выполнять с помощью мощного паяльника и при воздействии на контакты не дольше пары секунд и третий самый удобный способ сборки LiFePO4 аккумулятора из ячеек, которые имеют болтовое соединение.

Собрать LiFePO4 аккумулятор просто.