Меню
Бесплатно
Главная  /  Skoda  /  Я сделаю это сама. Всё про адаптивные подвески

Я сделаю это сама. Всё про адаптивные подвески

Адаптивная подвеска (полуактивная подвеска) - представляет собой разновидность подвески активного типа. Степень демпфирования установленных в ней амортизаторов изменяется, исходя из состояния дорожного полотна, манеры вождения и предпочтения водителя. Уровень демпфирования подразумевает скорость затухания возникающих в процессе работы амортизатора колебаний. Этот показатель зависит от величины сопротивления и показателей подрессоренных масс.

В современной адаптивной подвеске применяются два метода регулировки уровня демпфирования амортизаторов:

Первый метод основан на изменении проходного сечения клапана. Оно изменяется в зависимости от подаваемого напряжения. Чем выше напряжение, тем меньше становится пропускная способность клапана - соответственно увеличивается и жесткость амортизатора. Если напряжение снижается, пропускная способность уменьшается.

Амортизаторы с подобными электромагнитными клапанами устанавливаются в различных видах подвесок, вот некоторые из них:

  • Adaptive Chassis Control, DCC от Volkswagen;
  • Adaptive Damping System, ADS от Mersedes-Benz (в составе пневматической подвески Airmatic Dual Control);
  • Adaptive Variable Suspension, AVS от Toyota;
  • Continuous Damping Control, CDS от Opel;
  • Electronic Damper Control, EDC от BMW (в составе активной подвески Adaptive Drive).

Второй метод изменения степени демпфирования подразумевает использование магнитно-реологическую жидкость. Ее частицы при воздействии магнитного поля выстраиваются в линию. Амортизаторы, внутри которых находится такая жидкость, не имеют клапанов. Их функцию выполняют специальные электромагнитные катушки, расположенные внутри поршня. На поршне имеются канавки, сквозь которые в обычном состоянии свободно проходит жидкость. При подаче тока на катушки, жидкость создает определенное сопротивление и для перемещения поршня требуется большее усилие. Таким образом и увеличивается степень демпфирования (жесткость подвески).

Подобная конструкция используется в адаптивной подвеске следующих типов:

  • MagneRide от General Motors (автомобили Cadillac, Chevrolet);
  • Magnetic Ride от Audi.

Управление степенью изменения показателей демпфирования происходит с помощью блока управления, датчиков и ряда исполнительных устройств.

В группу датчиков входят: датчик уровня дорожного просвета, ускорения кузова и переключатель изменения режимов жесткости подвески.

Датчики отправляют сигналы в блок управления, после чего происходит их обработка. В соответствии с заложенной программой на исполнительные устройства поступают необходимые команды. В своей работе, блок управления изменением степени жесткости подвески взаимодействует со многими системами авто: гидроусилителем, системой управления двигателем, автоматической коробкой передач .

Адаптивная подвеска традиционно имеет три режима работы: комфортный, нормальный и спортивный.

В зависимости от дорожных условий и предпочтений водителя, он может самостоятельно устанавливать желаемый режим. В соответствии с выбранным режимом, блок управления придерживается заданной программы, которая хранит в себе необходимые данные о степени демпфирования амортизаторов.

Датчик ускорения определяет качество дорожного полотна и если на дороге много неровностей, вызывающих качание кузова, то система автоматически подстраивает нужную величину демпфирования.

Особое влияние на работу систему оказывает датчик дорожного просвета. Так, например, при торможении уменьшается просвет передней части автомобиля, а при ускорении, напротив задней части. Аналогичные изменения в дорожном просвете происходят при выполнении поворотов, когда кузов наклоняется в противоположную от поворота сторону.

Таким образом, адаптивная подвеска обеспечивает максимальный уровень комфорта в любой ситуации.

Со дня появления первого автомобиля инженеры ни на секунду не останавливаются в попытке создания идеального авто. При этом одной из главных задач, которая стояла перед великими умами, была разработка безопасной и универсальной подвески, способной подстраиваться под дорожные условия. И старания были вознаграждены. В 1954 году удалось выпустить первую машину, оборудованную гидропневматической (адаптивной) подвеской.

Назначение

Для чего нужна гидропневматическая подвеска? Инженеры создали адаптивный механизм, способный подстраиваться под покрытие и стиль вождения. Главные комплектующие устройства - гидропневматические узлы, отличающиеся повышенной упругостью. В роли элементов выступает рабочая жидкость и газ, находящиеся под давлением в предназначенных для них емкостях.

Адаптивная подвеска делает движения автомобиля плавными и при необходимости меняет положение кузова по отношению к дорожному покрытию. Гидропневматическая подвеска часто «смешивается» с другими видами подвесок. Яркий пример - автомобиль французской компании Ситроен C5. В нем сосуществуют две подвески - адаптивная и классическая МакФерсон (спереди) и многорычажный тип подвески сзади.

История

Как уже упоминалось, первое авто с адаптивной подвеской удалось создать в 1954 году, и уже через год новинка появилась на автосалоне Парижа. Конструкция узла произвела фурор среди знатоков автомобильного мира. Для тех времен машина с гидропневматической подвеской казалась чудом. Вне зависимости от числа пассажиров или заполнения багажника, авто сохраняло первоначальный клиренс и показывало плавность перемещения. Появилась возможность вывешивать колеса без применения домкрата.

Внимания заслуживала и функция, дающая возможность регулировать клиренс автомобиля. Для Франции с ее проселочными дорогами такая опция была весьма полезна. Адаптивная подвеска повысила уровень безопасности даже при движении по сильным ухабам.

Появление нового устройства стало началом пути. Инженеры компании Ситроен не остановились, и в 1989 году создали адаптивную подвеску Hydractive 1, которая применяется и сегодня. Преимущество новой конструкции - наличие электронной «начинки», позволяющей контролировать дорожную обстановку и адаптироваться под нее.

Прошло четыре года и машины марки были оборудованы обновленной подвеской Hydractive 2. Еще через семь лет (в 2000 году) мир увидел адаптивную подвеску Hydractive 3. Новая конструкция отличалась уникальными характеристиками и была разделена с тормозной системой (во второй «части» тормоза и подвеска взаимодействовали друг с другом).

Гидропневматическая подвеска устанавливается не только на машины Ситроен. Новую технологию перехватили и такие бренды, как Роллс-Ройс, Бентли, Мерседес и другие. В последние 5-10 лет этот список пополнился рядом других моделей.

Устройство

Адаптивная подвеска состоит из группы узлов, каждый из которых несет свою функциональную нагрузку:

1. Гидроэлектронный блок (второе название узла - гидротроник). Задача устройства - подать требуемый объем рабочего состава и гарантировать необходимое давление. В данном узле объединены следующие элементы:

  • электрический мотор;
  • ЭБУ («мозги» адаптивной подвески);
  • аксиально-поршневая помпа;
  • электромагнитные клапаны, регулирующие клиренс автомобиля;
  • защитный клапан;
  • запорный клапан. Задача - защита кузова от снижения клиренса в нерабочем положении.

ЭБУ и ЭМ клапаны - узлы системы управления гидропневматической подвески.

2. Емкость для рабочей смеси расположена над гидроэлектронным узлом. В автомобилях с адаптивной подвеской Гидрактив 3 примеряется жидкость LDS, имеющая ярко оранжевый цвет. До этого использовалась зеленая жидкость LHM.

3. Стойка передней подвески - устройство, в котором объединены гидравлический цилиндр и гидропневматический упругий узел. Элементы конструкции соединены через клапан амортизации, который эффективно гасит колебания кузовной части.

4. Упругий узел, работающий на гидропневматическом принципе, представляет собой металлическую шарообразную конструкцию. Внутри расположена эластичная мембрана, над которой находится азот (сжатый газ). Под перегородкой содержится специальный состав, передающий давление системе. При этом газ, как наполнитель, играет роль упругого элемента.

В адаптивных подвесках серии Hydractive 3+ смонтировано по одному упругому узлу на колесо и по дополнительно шарообразной конструкции на каждую из осей. Использование упомянутых элементов - возможность расширить уровни регулирования жесткости подвески. При этом срок жизни специальных сфер - 200 тысяч километров пробега и более.

Гидравлические цилиндры - группа узлов, гарантирующих наполнение жидкостью упругих элементов, а также изменение высоты кузова по отношению к дороге. Главное устройство гидравлического цилиндра - поршень. Шток последнего объединяется со «своим» рычагом подвески. Гидравлические цилиндры, расположенные спереди и сзади, имеют идентичную конструкцию. Разница только в том, что задний узел расположен под небольшим углом к поверхности дороги.

Регулятор жесткости - узел, с помощью которого корректируется жесткость подвески. В его состав входят:

  • ЭМ клапан для непосредственной регулировки;
  • дополнительные клапана амортизаторов;
  • золотник.

Регулятор жесткости монтируется на обеих подвесках. При этом возможно два режима:

  1. «мягкий» режим. В данном случае регулятор объединяет гидропневматические узлы таким образом, чтобы обеспечить оптимальное давление газа. При этом сам ЭМ остается без напряжения;
  2. жесткий режим активируется, когда на узел подается напряжение. При этом задние цилиндры, стойки и вспомогательные сферы изолированы друг от друга.

Система управления адаптивной подвеской состоит из следующих узлов:

  1. входные устройства. Сюда включается два механизма - переключатель режимов и группа входных датчиков. Последние преобразовывают снимаемые характеристики в электричество. Один из главных датчиков системы контролирует положение кузовной части (относительно поверхности) и угловой датчик руля.

    В автомобилях марки Ситроен смонтировано 2-4 датчика позиции кузова. Что касается второго входного устройства (углового датчика руля), то он предает данные о скорости проворачивания и направлении рулевого колеса.

    Специальный переключатель дает возможность регулировать жесткость и высоту кузова вручную;

  2. ЭБУ - «мозги» системы, которые собирают сигналы от входных узлов, проводят их обработку и с учетом заданного алгоритма направляют команды на исполняющие органы. В своей работе ЭБУ находится во взаимодействие с ABS и системой управления силового узла;
  3. исполнительные узлы - устройства, которые выполняют команды от ЭБУ. К ним относятся ЭМ клапаны жесткости и регулировки высоты, электромотор помпы гидросистемы, корректор фар.

Электромотор управляется блоком управления, меняет скорость вращения, производительность помпы и давление в системе. Адаптивная подвеска особенна наличием четырех ЭМ клапанов, регулирующих высоту. Первая пара поднимает переднюю подвеску, а вторая пара - заднюю.

Принцип действия

Элементы конструкции взаимодействуют по следующему алгоритму:

  • Гидропневматические цилиндры нагоняют жидкость к упругим элементам. Гидроблок держит под контролем давление и объем жидкости. При появлении колебаний жидкость проходит через клапан, что и гасит колебание.
  • Мягкий режим подразумевает объединение элементов друг с другом и создание максимального объема газа. На данном этапе происходит компенсация кренов и поддержание необходимого давления.
  • При необходимости включения жесткого режима к системе подается напряжение. После этого дополнительные сферы и стойки передней подвески разделяются между собой. В момент поворота жесткость меняется для каждого конкретно взятого узла. В процессе прямолинейного движения жесткость меняется.

Альтернативные варианты

Гидропневматическая система из серии Hydractive - не единственная разработка. Компания Мерседес представила рынку похожую по принципу конструкцию - Active Body Control. Принцип действия почти идентичен. Гидроцилиндры поджимают пружины, происходит изменение давления, задается нужная позиция и жесткость.

Адаптивная подвеска была разработана и компанией Фольксваген. Ее название - aDaptive Chassis Control. Узел обеспечивает управление настройками через датчики и корректирует жесткость шасси.

Преимущества и недостатки

Гидропневматическая подвеска - не воплощение идеала. Она добавляет комфорта и удобства, но в ней имеют место и недостатки.

Преимущества:

  • возможность корректировки клиренса вручную повышает проходимость автомобиля, упрощает процесс парковки, выгрузки и погрузки, а также уборки транспортного средства;
  • наличие в некоторых систематической регулировки делает эксплуатацию удобнее;
  • повышение комфортабельности поездки, обеспечиваемой за счет плавности хода. Если верить отзывам, то машина как будто плывет по воде, а не движется по твердому покрытию;
  • подстройка под стиль вождения и покрытие на дороге.

Минусы адаптивных подвесок:

  • сложность конструкции, что сулит затратами на ремонт и удорожанием автомобиля при покупке;
  • надежность адаптивной подвески меньше, чем у классических конструкций.
  • Такой тип подвесок отличается «нежностью», поэтому требует правильной эксплуатации.

Итоги

Гидропневматическая (адаптивная) подвеска - прорыв в сфере автомобилестроения. С ее появлением удалось решить массу проблем с управляемостью, клиренсом и подстройкой под стиль вождения. Главной проблемой остается цена, из-за которой "бюджетные" производители все еще отдают предпочтение доступным подвескам.

Адаптивная подвеска (другое наименование полуактивная подвеска ) – разновидность активной подвески, в которой степень демпфирования амортизаторов изменяется в зависимости от состояния дорожного покрытия, параметров движения и запросов водителя. Под степенью демпфирования понимается быстрота затухания колебаний, которая зависит от сопротивления амортизаторов и величины подрессоренных масс. В современных конструкциях адаптивной подвески используется два способа регулирования степени демпфирования амортизаторов:

  • с помощью электромагнитных клапанов;
  • с помощью магнитно-реологической жидкости.

При регулировании с помощью электромагнитного регулировочного клапана изменяется его проходное сечение в зависимости от величины воздействующего тока. Чем больше ток, тем меньше проходное сечение клапана и соответственно выше степень демпфирования амортизатора (жесткая подвеска).

С другой стороны, чем меньше ток, тем больше проходное сечение клапана, ниже степень демпфирования (мягкая подвеска). Регулировочный клапан устанавливается на каждый амортизатор и может располагаться внутри или снаружи амортизатора.

Амортизаторы с электромагнитными регулировочными клапанами используются в конструкции следующих адаптивных подвесок:

Магнитно-реологическая жидкость включает металлические частицы, которые при воздействии магнитного поля выстраиваются вдоль его линий. В амортизаторе, заполненном магнитно-реологической жидкостью, отсутствуют традиционные клапаны. Вместо них в поршне имеются каналы, через которые свободно проходит жидкость. В поршень также встроены электромагнитные катушки. При подаче на катушки напряжения частицы магнитно-реологической жидкости выстраиваются по линиям магнитного поля и создают сопротивление движению жидкости по каналам, чем достигается увеличение степени демпфирования (жесткости подвески).

Магнитно-реологическая жидкость используется в конструкции адаптивной подвески значительно реже:

  • MagneRide от General Motors (автомобили Cadillac, Chevrolet);
  • Magnetic Ride от Audi.

Регулирование степени демпфирования амортизаторов обеспечивает электронная система управления, которая включает входные устройства, блок управления и исполнительные устройства.

В работе системы управления адаптивной подвески используются следующие входные устройства: датчики дорожного просвета и ускорения кузова , переключатель режимов работы.

С помощью переключателя режимов работы производится настройка степени демпфирования адаптивной подвески. Датчик дорожного просвета фиксирует величину хода подвески на сжатие и на отбой. Датчик ускорения кузова определяет ускорение кузова автомобиля в вертикальной плоскости. Количество и номенклатура датчиков различается в зависимости от конструкции адаптивной подвески. Например, в подвеске DCC от Volkswagen устанавливается два датчика дорожного просвета и два датчика ускорения кузова впереди автомобиля и по одному - сзади.

Сигналы от датчиков поступают в электронный блок управления, где в соответствии с заложенной программой происходит их обработка и формирование управляющих сигналов на исполнительные устройства – регулировочные электромагнитные клапаны или электромагнитные катушки. В работе блок управления адаптивной подвески взаимодействует с различными системами автомобиля: усилителем рулевого управления , системой управления двигателем , автоматической коробкой передач и другими.

В конструкции адаптивной подвески обычно предусмотрено три режима работы: нормальный, спортивный и комфортный.

Режимы выбираются водителем в зависимости от потребности. В каждом режиме осуществляется автоматическое регулирование степени демпфирования амортизаторов в пределах установленной параметрической характеристики.

Показания датчиков ускорения кузова характеризуют качество дорожного покрытия. Чем больше неровностей на дороге, тем активнее раскачивается кузов автомобиля. В соответствии с этим система управления настраивает степень демпфирования амортизаторов.

Датчики дорожного просвета отслеживают текущую ситуацию при движении автомобиля: торможение, ускорение, поворот. При торможении передняя часть автомобиля опускается ниже задней, при ускорении – наоборот. Для обеспечения горизонтального положения кузова регулируемая степень демпфирования передних и задних амортизаторов будет различаться. При повороте автомобиля вследствие инерционной силы одна из сторон всегда оказывается выше другой. В данном случае система управления адаптивной подвески раздельно регулирует правые и левые амортизаторы, чем достигается устойчивость при повороте.

Таким образом, на основании сигналов датчиков блок управления формирует управляющие сигналы для каждого амортизатора в отдельности, что позволяет обеспечить максимальную комфортность и безопасность для каждого из выбранных режимов.

Кто беден, тот и глуп.
Японская поговорка

Включить блокировки, перевести «раздатку» в пониженный ряд, чуть тронуть педаль газа. Новейший Land Cruiser Prado c 4-литровым бензиновым мотором и пневматической задней подвеской не торопясь и с достоинством вползает в глубокую, раскатанную по осени колею, щедро припорошённую снегом...

Что почем

Знаете, бывает так, что всё совпадает. Долгожданный выезд на тест-драйв, великолепный автомобиль и идеально подходящая ему погода. Всё совпало. Ну, по поводу погоды вы сами всё видите по фотографиям, а по поводу машины позвольте вас слегка просветить.

По десятибальной я бы поставил машине 7-8 баллов. Но нужно помнить, что это субъективная оценка - исходя из моих личных предпочтений. В целом машина хорошая - хотя лично мне немного не хватает динамики. Но она очень комфортная и это настоящий «проходимец»! Для своего назначения машина очень хороша, тем более, что цена приемлемая. Но как следующий свой автомобиль я бы рассматривать Прадо не стал, по крайней мене, пока - к японским машинам ещё не нашел подход, хотя у них есть ряд бесспорных преимуществ - качество, цена, надёжность.

Устанавливаемая в современных автомобилях подвеска является компромиссом между комфортом, устойчивостью и управляемостью. Подвеска с повышенной жесткостью, гарантирует минимальный уровень крена, соответственно гарантирует комфорт и устойчивость.

Мягкая подвеска характеризуется более плавным ходом, при этом при выполнении маневров, происходит раскачивание автомобиля, которая приводит к повышению неустойчивости и ухудшению управляемости.

Поэтому автоконцерны стремятся разрабатывать новейшие конструкции активной подвески.

Термин «активная» подразумевает такую подвеску, основные параметры которой изменяются в процессе эксплуатации. Внедренная в нее электронная система позволяет изменять нужные параметры в автоматическом режиме. Конструкцию подвески можно разделить по ее элементам, у каждого из которых изменяются следующие параметры:

Некоторые типы конструкции используется воздействие сразу на несколько элементов. Чаще всего в активной подвеске применяются амортизаторы с изменяемой степенью демпфирования. Такая подвеска имеет название адаптивная подвеска. Часто данный тип именуется полуактивной подвеской, ввиду того, что в ней не присутствуют дополнительные приводы.

Для изменения демпфирующей способности амортизаторов, задействуются два метода: первый - применение электромагнитных клапанов, а также наличие специальной жидкости магнитно-реологического типа. Ею наполнен сам амортизатор. Управление степенью демпфирования каждого амортизатора индивидуально и осуществляется электронным блоком управления.

Известными конструкциями подвески вышеописанного адаптивного типа являются:

  • Adaptive Chassis Control, DCC (Volkswagen);
  • Adaptive Damping System, ADS (Mersedes-Benz);
  • Adaptive Variable Suspension, AVS (Toyota);
  • Continuous Damping Control, CDS (Opel);
  • Electronic Damper Control, EDC (BMW).

Вариант активной подвески, в которой реализованы специальные упругие элементы считается наиболее универсальным. Он позволяет постоянно поддерживать необходимую высоту кузова и жесткость системы подвески. Но с точки зрения конструктивных особенностей, она более жесткая. Стоимость ее значительно выше, как и ремонт. Помимо традиционных пружин в ней установлены гидропневматические и пневматические упругие элементы.

Подвеска Active Body Control, ABC от Mercedes-Benz регулирует уровень жесткости с использованием гидропривода. Для его работы в стойку амортизатора под высоким давлением нагнетается масло, а на соосно расположенную пружину воздействует гидравлическая жидкость.

Блок управления гидравлическими цилиндрами амортизаторов получает данные от 13 различных датчиков, в числе которых датчики продольного ускорения, положения кузова, давления. Наличие системы АВС практически исключает возникновение кренов кузова при поворотах, торможении и ускорении. При повышении скорости авто более 60 км/час система в автоматическом режиме понижает автомобиль на 11 мм.

В основу пневматической подвески входит пневматически упругий элемент. Благодаря ему становится возможным изменение высоты кузова относительно дорожного полотна. Давление нагнетается в элементы посредством специального электродвигателя с компрессором. Жесткость подвески при этом изменяется с помощью демпфируемых амортизаторов. Именно по такому принципу и создана подвеска Airmatic Dual Control от Mercedes-Benz, в ней используется система Adaptive Damping System.

Элементы гидропневматической подвески позволяют регулировать высоту кузова и жесткость подвески. Подвеска регулируется с помощью гидропривода высокого давления. Гидросистема работает от электромагнитных клапанов. Одной из современных примеров такой подвески считается система Hydractive третьего поколения, устанавливаемая на автомобили производства компании Citroёn.

К отдельной категории подвесок активного типа относят конструкции, в составе которых присутствую стабилизаторы поперечной устойчивости . Они в данном случае и отвечают за жесткость подвески. Двигаясь прямолинейно, стабилизатор не включается, ходы подвески увеличиваются. Таким образом, управляемость на неровной дороге улучшается. При выполнении поворотов или стремительном изменении направления движения, жесткость стабилизатора увеличивается, тем самым предотвращается возникновение кренов кузова.

Наиболее распространенными видами подвески являются:

  • Dynamic Drive от BMW;
  • Kinetic Dynamic Suspension System, KDSS от Toyota.

Интересный вариант активной подвески устанавливается на автомобили Hyundai. Это система активного управления геометрией подвески (Active Geometry Control Suspension, AGCS). В ней реализована возможность изменения длины рычагов. Они влияют на показатели схождения задних колес. При движении прямо и выполнении маневров на небольшой скорости, система подбирает минимальное схождение. При выполнении маневров на большой скорости приводит к увеличению схождения, благодаря чему улучшается управляемость. Система AGCS взаимодействует с системой курсовой устойчивости.